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Abstract: As the volume of Web services grow, the need for automated matching of Web services with client
requirement also grow. It is found that matching a query with services is improved by complementing semantic
match along with syntactic methods. This paper explains yet another novel approach for match making of
SAWSDL Semantic Web services which is adaptable to various configurations to get optimum match. Starting
from increasing cache for local Ontology to Matching is done at pure syntactic or pure semantic or hybrid,
which is customizable by the user. Results show the system is found to achieve higher matching levels by
retaining maximum precision at different recall levels when compared to any other recent matching algorithms.
The results of the matching algorithm are recorded using S3 test collection, SAWSDL-TC3 by developing the
plug-in for SME2 testing environment.
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INTRODUCTION services, searching for a service for a client request is

The Web that exists today is continuously evolving measurements. This will yield poor matching as we tend
so that it carries numerous amounts of data. Not only to ignore the meaning of client request by concentrating
data, today the Web is full of functionality that can be more on syntactic similarity. When we use ontologies and
accessed by clients. The B2C and B2B business its concepts for matching, we try to match the meaning of
transactions are a hit because of the availability of client request than the exact word (text) matching. Web
business services as Web services. This dependability of service name matching, IO parameter matching,
consumers with the data and services gave birth to description matching and semantic (logical) matching are
innovations. Negotiations happen before accessing these some of the matching components in SWS matching
Web services for various reasons. One such negotiation process.
is searching and matching the correct Web service for a SAWSDL is a light weight method of making the
consumer’s request. These negotiations and searching Web services as semantic Web services. As it uses less
can be automated by semantic technologies. The semantic complex semantic annotation methods, developing
Web (Web 3.0) can overcome some of the short comings systems based on SAWSDL are always compact when
of the current Web (Web 2.0). compared to OWL-S. Model references in WSDL files

Web services can either be annotated or semantically give us the mapping of concepts in service name,
enriched, so that service retrieval process can be faster description, IO to ontological concepts. Hence matching
and accurate. When we do so, the Web services are called can do at four levels using any logical reasoning tools.
semantic Web services (SWS). SWS can be created either The lifting schema references can be used while
by annotating the corresponding WSDL files; in which converting schema types in to ontological concepts.
case they are called SAWSDL [1] services or they can be SAWSDL makes the matching system light weight and
enriched by SAWSDL files. In case of simple Web complete.

carried out by techniques used in text similarity



Middle-East J. Sci. Res., 24 (12): 3688-3695, 2016

Sim Pack: http:// www.research-projects.uzh.ch/ p8227.htm1

3689

Hybrid technique SemaMatch introduced here uses Logic subsumption matching process is divided into the
all the similarity measurement techniques said above. It identification of data items to be matched, the
uses semantic based similarity measure along with measurement of similarities and the actual matching of
syntactic matching method of simple text similarity components. The actual matching can be, a. operation
measures when the former fails to work. The SVM [2] based matching, b. assigning similarity with numerical
technique is not adopted for learning purposes as it was values for degree of match based on OLS (Ordinary Least
to find the candidate features for similarity measures in Squares) estimator.
other approaches. Each of these methods has already Fall back strategy. In case if the above strategy
been accepted as standard ways for finding match. In this (logic) fails, a simple word distance based similarity
work, all the above methods are not only adopted, but measures using WordNet [6] ontology is calculated to
also configured in a way that they produces accurate find the match forming bipartite graph with edges
results in short response times. To test the proposed weighted to inverse of word distances. To complement
system  the     well-known,    S3    contest   [3]   about  test this simple similarity measure, the response time of
collection is used to compare  the  results  with  other matching process is improved by using caches. Caches
methods exhibited in the contest. Even though this are populated when the concepts accessed for the initial
contest was conducted in 2012, the proposed system is period. Different caches are used to store distances
implemented with proper plug-in to work with match maker between concepts for the subsumption matches.
testing facility which comes along the S3 environment. As In S3 contest for the year 2012, LOG4SWS.KOM yield
with any other matching system’s performance one of the best results when nDCG, Q and AQRT(s)
measurements, the proposed system is also tested at measurements are concerned than any other match
various recalls for macro averaging precision. F1 score is making system. As previously stated the evaluation tool
also calculated to find the mean value of recall and used to obtain these results is SME2 environment used in
precision. Performance in test results has shown that the S3.
proposed system ranked top among any other cutting
edge matching methods. SAWSDL-iMatcher: This system [2] lets the user (not a

Service matching can be done at various levels, on naive user), to configure the different matching strategies
various parts of service description. Some of the existing which are simultaneously applied on various parts of the
text similarity measurement techniques, for example service information. Different methods from simple text
Euclidean’s distance measure, are applied in syntactic comparisons available from Simpack  API implemented in
methods. Structural level matching can be applied to Java to logic based semantic matching or hybrid methods,
match the service request with service process flow by or matching by finding the distance between concepts.
methods like work flow analysis using upper ontologies. These methods are available for users to choose, based

The second chapter tells about the state of the art, on the part of service information like service name,
existing methods of match making, the query and service description, input/output, annotations etc. iMatcher also
test collection called, SAWSDL-TC2 [4], which is aggregates these ranks based on aggregation schemas
standard test data set of S3 contest. After that the like schemas based on statistics, schemas based on
proposed system, ‘SemaMatch’ is  explained  with  the weights, etc. These aggregations combine different ranks
strategies implemented in detail. The fourth chapter tells obtained from various matching strategies in to a final
about the implementation details like packages used, similarity value.
environment developed and also about various
measurements of algorithm and comparisons. In the fifth Following Are the Different Matching Strategies Used in
chapter conclusions and future directions is narrated. iMatcher.

Related Work The user can select this strategy when he is sure that the
LOG4SWS.KOM: Follow two different approaches in services are given meaningful names that represent the
matching. The first being logic subsumption matching actual usage of the service and service names follow some
which is self-adaptive [5]. The second approach is a basic conventions like names are in camel case, separated
standby when the first fails, called a fall back approach. by  underscore,  etc.  Once  the  offer  service   names  are

1

Syntactic Matching: Matching based on service name:
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tokenized then a simple text matching method can be Statistical Model Based Matching: Out of the existing
applied  to  find  similarity   between   the   service  request
name and service offer name. The method [7] can vary
from Jaro coefficient, Levensthein edit distance, Dice
coefficient, etc.

Matching based on service description: The service
descriptions use natural language with domain specific
terms to describe Web services. These technical terms
can be found in all the services of a particular domain,
hence descriptions are a proper candidate for similarity
measurements. iMatcher uses seven different vector
space models to measure similarity [7] including cosine,
Euclidean, ManhattanPearson’s correlation coefficient,
dice and Jaccard from Simpack.

Matching based on semantic annotations: This
matching is otherwise called as syntactic matching on
semantic annotations. Finding similarity two services
works as follows. Concepts in annotations are read by
reasoned like Pellet [8] and converted to unfold concept
expressions using domain ontologies.

An unfolded concept expression is nothing but
concepts  in  the  same  hierarchy  in  the domain
ontology.  For  example,  if  car  is  the input concept in
one service annotation, then it’s unfold concept
expression is Unfold = {Automobile, Four-wheeler}.car

Likewise   the   unfold   concept   expression   are  found
for  both the   services  input  concepts,  output
concepts. From the terms of input, output expressions
vectors   are   formed   with weights   assigned   to   1  if
the  term  exist,  0  otherwise.  Jaccard  similarity  can  be
found between the two services input vectors. Then
averaging is done for input, output which gives the
similarity value.

Semantic Matching Strategy: The semantic similarity
between a request and service is decided by the user.
User can choose the similarity to be either input oriented
or output oriented. If user chooses to be input oriented
the similarity is measured between input concepts of
request and service. Or it can be the other way around.

Once it is chosen then similarity is set to 1 if request
concepts are ancestors of service. Else similarity is
calculated as syntactic similarity than semantic similarity
measure. If the concepts of request and service are from
two different ontologies then similarity value will be called
similarity alignment value, which is calculated by
alignment tool, the Lilly  tool. Then similarity value will be3

set to that maximum of syntactic value or alignment value.

data set of requests and offered services, statistical model
first trains itself on matching and tries to predict the
similarity based on the learning it had. Each request and
service pair is used to form its vector of matched values
using all the matching strategies. Then algorithms like
support vector regression, linear regression, etc. from
Weka [9] statistical tool can be used to calculate
relevance value between request and service from the
vector.

URBE: It [10] comes in two flavors. URBE-S and URBE.
The former  being  the  semantic  matchmaker  and the
latter  is  syntactic  matcher,   called   annSim  and
nameSim respectively. The annSim finds the similarity
value by finding the distance between the request and
service concepts by using ontology. If this method fails,
the nameSim finds the similarity based linguistic
approaches considering service, operation, IO names
using ontologies like WordNet [11]. Then algorithms like
support vector regression, linear regression, etc. from
Weka [9] statistical tool can be used to calculate
relevance value between request and service from the
vector.

In both the cases along with them, the DataTypeSim
using the predefined table values calculates data type
similarity between simple types (only) taken from WSDL
xsd:type elements. While measuring the performance,
URBE gave a substantial long response time (the highest
in S3) comparing any other algorithm while maintaining
average AP and nDCG.

Nuwa-SAWSDL: This method [3] is hybrid, meaning that
logic matching is calculated along textual similarity
calculation. Logical matching is basic concept
subsumption matching on IO and service description
concepts. The textual match is either IO concept match on
the concepts extracted using ontology like WordNet [11].
If the textual comparison on concepts fails then normal
text comparison measures like Cosine TF-IDF [12] of
keywords extracted from service name, service
descriptions, text value of semantic IO concepts will be
applied. The ultimately ranking is based on weighted sum
of results of both matching types.

When considering performance of Nuwa in S3, it
came second, third and fourth in nDCG, Q and AP
measure [13] and performed not so well in AQRT(s)
measure.
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SAWSDL-MX2 and iSEM 2.0: The MX series [14] which learns from a data set of request and service. Vector
consist of M0, M1 and M2. Where M0 is simple logical values are for logical, textual, structural and relevance
matching  which  results  in  five  different  classes (binary) match. This learning from TC can later be used to
namely,  Exact,  plugin,  subsumes,  subsumed  by  and find match for services available in Web. When comes to
fail. Exact is when all the input and output in IOPE are performance the response time is delayed further than M0
same  both   in  request  and  service  offer.  Plugin is or M1.
when O > R  and O <  R , for all input and output The final version is iSeM[15] which is the evolutioni i o direct o

parameters, which is all input parameters of offered of SAWSDL-MX series. The same algorithms from
service  are  super classes of all input parameters of SAWSDL-MX series are adopted with the variation of
service request. Also all output parameters of offered approximate matching in logical matching. The algorithm
service are direct child classes of all output parameters of uses looser criteria for logical match when the match is
service request. Subsumes is same as plugin except it Subsumption. iSeM is by far the best approach in terms of
includes all not only direct child classes of output AP and ranked principal in both 2010 and 2012 S3 contest
parameters but all children classes, i.e. O > R  and O < R . at the cost of response time.i i o o

The subsumed by classification is the reverse of plugin,
i.e. O > R  and O >  R . In all other matches, it is Semamatch Algorithm Design: The proposed system hasi i o direct o

considered as Fail. two components: the publishing part and the requisition
M1 is, with logical based matching, IR (Information followed by matching part. While publishing, the service

retrieval) based text similarity measures like Jaccard index, provider will give service information along with semantic
Jensen shannon or Cosine, is combined. This text annotations. These services are then categorized and
similarity, syntax based, is included only as compensative indexed in the service repository. If no match is found
method, when the logical match is Fail or integrative while adding, which means no category is matched; a new
method, when the logical match is subsumed by. Java category is added to the list. In the discovery phase,
SimPack library is used for finding textual similarity when a request in given to the system, it first searches in
between request and service description. This SAWSDL- the cache to find a match. If not found then it goes to the
MX1 method always yields quickest response than other repository and takes a list of services from the category of
MX versions. service request.

Structural level matching is added with M1, using Once matched category is found then list of services
WSDL Analyzer on structural schema information from from the category is retrieved then the matching and
WSDL files. The M2 version introduces a learning ranking process is initiated as explained in the following
approach on the existing logical, textual, structural sections. The overall system is given in the following
matching. The learning is based on weighted SVM  vector diagram.

Fig. 1: The matching system architecture
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The Matching Process: The service request will be this level of match is included as ‘plugin’ match. The
matched against all service advertisements of a service numerical value of 0.75 will be assumed for this level of
category which are retrieved from the repository. The match.
algorithm is called ‘find Degree of Match (R, A)’ and it The next matching degree is left out in Tomaco and
works as follows. conceived differently in SAWSDL MX and Paolucci

Degree of Match Algorithm: The find degree of match corresponding numerical value is 0.5. The argument is
algorithm is used to find the matching level between the that, Subclass of input and a subclass of output match is
service request and service advertisement. more appreciated than the match, Superclass of input and

The algorithm assumes 5 different levels of match can a subclass of output. 
exist between any two requests and advertisement. They This component in matching degree is different from any
are, (1) ‘Highly appreciated’ which is equivalent to the other matching algorithm.The (4) fourth matching level is
conventional ‘exact’ match, which assumes the numerical that when the advertised output is a parent of requested
value of 1. The next degree is, ‘Appreciated’, in which we output and the requested input is a parent of advertised
have two subclasses, high rated and low rated. The (2) input. It is classified as ‘Less Appreciated’ with the
‘Appreciated ’, appreciated match is equal to the numerical value of 0.25. For any other matching classes,high rated

conventional ‘plugin’ match. In the following methods of they are classified as the last level, ‘Fail’ with numerical
matching, Paolucci [16], SAWSDL  MX  and  Tomaco [17], value of 0.

methods. It is called, (3) ‘Appreciated ’ and thelow rated

The algorithm:

degreeofMatch findDegreeofMatch(In ,In ,OUT ,OUT )R A R A

{
Array degreeofMatch[in ] = 0; // failr

Array in = In .getInputs();r R

Array in = In .getInputs();a A

degreeofMatch=0;
for every input in  in requestr

{
if ((Out ==Out ) and (in == in ))R A r a

degreeofMatch[in ] = 1; //highlyAppreciatedr

else if (Out >  Out ) {R direct A

if (In > In )R A

degreeofMatch[in  = 0.75; // appreciatedr] high

else if (In < In )R A

degreeofMatch[in  = 0.5; // appreciatedr] low

}
else if (Out < Out )R A

if (In > In )R A

degreeofMatch[in  =0.25; // lessAppreciatedr]

else
degreeofMatch[in  = 0; // failr]

}
degreeofMatch = degreeofMatch[in ].getAverage();r

return degreeofMatch;
}

The proposed degree of matching algorithm can be understood by referring the following table for the domain
automobile and the ‘Vehicle’ ontology given in the diagram that follows.
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The ‘Vehicle’ ontology:

Fig. 2: Vehicle ontology

Illustrative Example:

Sl.No Degree of match Meaning Example Numeric value

1. Highly appreciated The Exact match is the most desired one, in both cases of Car = CarR A (output) &

(Exact) input and output and should be rated with maximum similarity. Diesel  = Diesel 1R A (input)

2. Appreciated: Car >  SUVR direct A (output) &

Higher rated Subclass of input and a subclass of output Fuel > Diesel 0.75R A (input)

3. Appreciated: Car >  SUVR direct A (output) &

Lower rated Superclass of input and a subclass of output Fuel > Diesel 0.5A R (input)

4. Less Appreciated : Subclass of input and a superclass of output Vehicle > SUVA R (output)  &

Fuel > Diesel 0.25R A (input)

5. Fail Otherwise 0

The Ranking Process: The matching process is called to for each OP
match each request input parameter with advertisement {
input parameter and each output parameter of request Array matchOP ;
with advertisement. t e m p M a t c h =

The ranking process is very straight forward. Since findDegreeofMatch(IN ,IN ,OUT ,OUT );
the most desired match would be the service should matchOP .add(tempMatch);
accept any input (most generalized) whereas the output }
should be specific (subclasses). matchOP .sort();

The algorithm gets the degree of match between }
requested input &output (Ri & Ro) and offered }
operation’s input&output (Oi & Oo). The maximum match
between request input&output and offer input&output is Hybrid and Fall Back Approach: The algorithm works in
found for one parameter at a time for an operation. Then a hybrid mode. When there is a low degree of match, the
average of all parameters (both input and output) of an algorithm switches from logic matching to conventional IR
operation is calculated. The assumption is that each textual matching. When the logic match gives the value
service has at the maximum of one operation. Then this which is less than 0.75, then the fall back method is
value will be added to the list of matched values and applied i.e. ‘findDegreeofMatch’ is replaced with text
sorted. The operation with the highest value in the list is similarity methods like, Cosine, Dice, Euclidean, Jaccard,
the highly ranked service for the request. Monge-Elkan[7] or Jaro can be replaced. Since Elkan and

The Algorithm: underscores, these methods are preferable and hence kept

sortedListofOperations rankOperations(R,A) methods can be configured, so that any other method, like
{ Jaccard, Cosine, etc can also be used.

RA

R A R A

RA

RA

Jaro methods don’t consider camelcase, snakecase,

as default methods. The syntactic (text) comparison
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Fig. 3: Macro average precision comparison.

So the matching function can be defined as follows,

Implementation,Measurements and Result Comparisons: corresponding ontologies of the parameters are updated
The matchmaking algorithm is being implemented in Java, to its knowledge base there by enabling the discovery
using the API for parsing the SAWSDL semantic process to search on a limited sub set of services on the
annotations of services described in the SAWSDL TC4 repository with no external references to the ontologies.
environment using Pelletreasoner to calculate the The matchmaking algorithm checks semantic similarity of
semantic similarity of the classes. each of the parameter value by setting degree of match

To evaluate the proposed algorithm, SME2 tool was and is used to rank the discovered services.
used. SME2 tool is the defacto tool for the research The future works can be on matching algorithm like,
community to test their matching algorithms and compare change in different levels of degree of match, setting
with the established works in the field of research. A threshold level to switch from logical matching to
plugin was developed to test the algorithm with syntactic matching, etc.
SAWSDL-TC3 test collection. The latest edition of SME2
tool used in the S3 edition conducted in the year 2012 is REFERENCES
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