
Middle-East Journal of Scientific Research 24 (12): 3748-3754, 2016
ISSN 1990-9233
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.3748.3754

Corresponding Author: Megala Manickam, Department of Applied Mathematics and Computational Sciences,
PSG College of Technology, Coimbatore - 641038, Tamil Nadu, India.

3748

Shielding Cross-Site Scripting Attacks Using the State of Art Techniques

Megala Manickam and Uma Maheshwari Govindasamy1 2

Department of Applied Mathematics and Computational Sciences,1

PSG College of Technology, Coimbatore - 641038, Tamil Nadu, India
Department ECE, PSG College of Technology, Coimbatore - 641038, Tamil Nadu, India2

Abstract: Malicious codes are inserted by the attackers to steal information such as cookies and credentials
that appears on the web browser. These codes includes HTML tags and JavaScript functions. It becomes a
tough task for the user to sanitize query from malicious code that could be hooked. Nowadays dynamic
websites are designed to increase the interactiveness between services that are available over internet. However
the features used by the browsers to support these resources increases the security risks and makes way for
the new malicious code injection or Cross-Site Scripting (XSS). XSS stands in the top list of threats that are
exposed to web applications in the recent years. The main objective of this paper is to conduct a systematic
review of the studies that are done on XSS vulnerabilities and attacks. Even though certain studies have
addressed through the detection and prevention mechanisms, we have noted that many contributions
addresses the dynamic analysis techniques. No single solution can effectively invade the intruders. More
researches have to be conducted to detect new attacks and prevent them from affecting source code before it
is deployed. We have also made a survey of the applications and limitations of the proposal that are taken for
study.

Key words: Cross Site Scripting Attacker Vulnerabilities SQL Injection

INTRODUCTION users are unaware of the JavaScript codes that are

With the increased growth of internet and the manipulate HTML documents. These types of attack are
amount of information available, users exchange sensitive termed as Cross-site Scripting attacks. Cross-Site
information without considering the security. In recent Scripting (XSS) is considered as the most common
year crimes related to web hacking has increased. application layer hacking techniques. XSS is of three
Attackers involved in these activities captures system types: Reflected, Stored and DOM based. Reflected XSS
information and vulnerabilities to penetrate through their is executed by the browser of the victim and triggered
system to harm their secured data. The vulnerabilities when the victim provides input to the web site. Stored
can be of one of these types: Improper validations on XSS attacks are the malicious code/script stored in the
inputs, unpatched software, security controls disabled, databases, comments or other fields by the attacker that
default or remember passwords [1]. Hence information is executed in the client side. Attackers may collect
security is proposed to deny unauthorised access and sensitive or secured significant information from the
destruction to maintain secure transmission of information victim system.
through web. Information exchange done via web makes The purpose of this work is to forecast the results of
the user to interact where the user enters his/her the systematic literature review conducted in the recent
information which is then passed to the web server. The state of research on XSS attacks. The review is made to
communication is made through the application code cover the period of past 5 years (i.e) from 2010 to 2016.
that is exposed to the user on his/her session [2]. Web The paper is structured as follows. Section 2 describes
applications use JavaScript code and HTML Tags to the methods that are applied in the study and results
embed web pages to support client-server architecture. are presented in Section 3. We conclude the paper in
The code is executed in the web browser. Some times Section 4.

automatically inserted into web documents which

XSS Website

M alicious
Scrip t code

Attacker

Script code
(HTM L Tags)

Web
Application

Database

Browse

Acquire
sensit ive
Information

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3749

Table I: Confusion Matrix
Classification
--

Real Class XSS Non XSS
Attack (XSS) TP FN
Normal (Non XSS) FP TN

Research Methodology: This study presents the literature
review of certain research studies that are carried on XSS.
We have referred the review article of Isatou for
organizing the paper [3].

Search Process: As proposed by Isatou we have used
the following search terms to collect articles needed for
this study. These databases are open access articles
which contain context related to our field of research.
Certain case studies also use these references for carrying
systematic literature reviews in XSS attacks. The database
and the URL are shown in Table I. The following search
terms were used in this survey:

Cross-Site Scripting
XSS Vulnerabilities
Cross Site scripting Attacks
Recent Research on Cross Site Attacks
Scripting Survey Cross Site
Removal of Vulnerabilities in XSS
Classification of XSS Attacks

The articles obtained through this process are
downloaded from the search criteria made such that the
recent publications (5 years) were covered. The topics
included for our research are security vulnerabilities such
as SQL injection and methods proposed to address the
problem. The aim of study, year of publication, problem
discussed, solution proposed and type of XSS were
addressed.

Organizational Statistics: White Hat Security Statistics
have analysed the financial and banking sectors to
explore the reasons why the banking websites are
frequently vulnerable to cyber attacks. High fraction of
vulnerable attacks is exposed by any one of the two
methods.

Frequency of Modification of Source Code of Web
Applications
Static Analysis of Source Code of Web Application

Varieties of defensive mechanisms have been
employed by organisation to control the behaviour
of web application. These defensive mechanisms
include

Fig. 1: Process of XSS attack

Providing computer based software training to the
programmers
Enforcing library in web application to centralise
security controls
Static analysis
Deployment of Firewall
Anti-Fraud Monitoring System

According to White Hat Security Statistics Report
92% of the web applications from different organization
are subjected to Static Code Analysis and 72% include
white list libraries.

Injection of Attacks: Cross Site Scripting works by
injecting the malicious XSS payload vector to steal
sensitive information from a victim system. XSS normally
focus on the un-sanitized inputs and theft of victim
browser information including cookies, passwords etc by
injecting JavaScript code. Bypassing XSS attacks just
disables the scripting language on browser which affects
readability of the web page. The step followed in the
attack injection is depicted in the Figure 1.

At first the attacker finds a website that is susceptible
to XSS attack, then the attacker inject malicious
JavaScript code
When the victim browser browse the website
malicious code that comes in the form of current post
in HTTP response message.
When the malicious code is executed victim
credentials (e.g. cookies) will be transferred to the
web server of the attacker.

Cookies are used by attackers in session hacking. An
XSS attack normally occurs in dynamic web applications
that require input from the user end.

1. $name = $_GET[’name ’];

2. echo "Hello " + $name + "!";

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3750

Fig. 2: Example of a Reflected XSS the areas which require input from the client’s web

Taxonomy of Xss Attacks: XSS attacks can be classified login forms, bulletin boards, search fields, comments
into three categories namely DOM based attacks, etc.
Persistent and Non-Persistent XSS attacks. Depending on Now input any text in to these input fields and submit
the type of vulnerability, the methods for detection, to the web server of the web application
avoidance and exploitation may vary. After this test the first condition which states that the

Un-Sanitized Programming XSS: This type of issue is the same text or keyword which was supplied by the
caused by insecure programming. Handling user-provided user. If the response web page contains same
inputs in unsafe manner can lead to this type of XSS. keyword then web application is declared as XSS
Every type of XSS attacks a web application in a specific vulnerable. On the other hand if the response web
way. page does not contain any user supplied keyword

Reflected XSS: This term denotes all non-persistent XSS The second condition is to simply input any script
issues which occur when the web application echos part string (<script>”Hello”</script>) in the user supplied
of the HTTP request in the respective HTTP response’s areas and submit this input string to the web server
HTML. In order to make this attack a successful one the of the web application. After submitting this request
attacker has to trick the user into sending fabricated to the web server of the web application, if the web
HTTP request. This can be done by including a malicious server replies with a “Hello” message in the pop-up
link or hidden iframe into the page. A sample code is window, then the website is vulnerable to XSS
shown in Figure 2. attacks and if it is not display then check for final

Stored XSS: Stored XSS refers to the attack in which The final condition states that simply search for the
attacker inject malicious script in the vulnerable same input java script string
application’s storage. In this type of attack malicious (<script>”Hello”</script>) in the source code of the
script remains in the application even after the exploited web application. If any part of the string is
session ends. Hence the user who receives the injected successfully found, then the web application is
script is exploited to the attacker without any further vulnerable to XSS attack.
actions by attacker. Unless like reflected XSS after
embedding malicious script successfully into the Web Page Classification: Static analysis does not
application, the actual exploitation rely on the outside of provide examples of input values that must be used to
the vulnerable web application. make the application to execute the path that causes XSS

DOM-Based XSS: This is a special variant of reflected path and evidence of vulnerability mechanisms. This
XSS in which the logical errors in the JavaScript cause enables the developers to understand the problem before
XSS conditions by careless usage of Client side data. This fixing them. Hence a combination of genetic algorithm and
type of issue occur if a JavaScript uses controlled values concrete symbolic execution is used for the generation of
to alter the HTML content of the web page [5]. security test case. Concrete Symbolic Values consists of

Background and Literature Study: Several works have executed. Hence Boolean expressions are interpreted on
been done in the past related to the cross-site scripting decision points as conditions on symbolic inputs.
attacks. The survey of these works have been divided in A solver is resorted for reasoning on symbolic values
to two categories and to elaborate new values that satisfies conditions that

Detection of XSS Vulnerabilities are not satisfied by the previous executions. The symbolic
XSS Defensive Techniques value of an input is the name of input parameter. If the

Detection of XSS Vulnerabilities: In [6] authors have
proposed a clear solution of finding whether the web
application is vulnerable or not. The steps for finding
vulnerability it is as follows:

Open a web site from web browser and browse for

browser side. Such scenario in web application are

check the response web page of the web server for

then check for the second condition

condition.

vulnerability. Runnable Test cases provides an execution

tracing input variables when the program is concretely

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3751

symbolic value of a variable is not an input variable it can This technique have also proved with no false positives
be retrieved by querying the SYMP map. Symbolic value and high revealing capability than other black box
of expression is the string that results from quotation of techniques [8].
expression where variables are replaced with their The objective of Dynamic Hash Generation technique
symbolic values. This combined strategy is able to is to make the cookies useless for the attackers. This
generate test cases with higher coverage and it is approach can be implemented on the web server without
suggested that if the genetic algorithm shows poor making changes on the web browser. Web servers thus
performance the contribution to the combination is more keeps track of the name and attribute in the cookie and
important to improve the results of concrete symbolic send hash value to the browser. At each time when
execution. Concrete symbolic execution is proven to be browser makes an active connection the browser has to
effective in overcoming the limitation of each other include hash cookie value into corresponding request so
combined strategy. This helps in finding input values that that web server rewrite the hash cookie value to the
satisfies narrow conditions while GA helps to explore original value generated by the web server. XSS attack
search space and possibly finding input values when can steal the cookie information stored on the browser to
solver gives up due to complex conditions that are hijack user session. Here the web server is made to
modelled by its language [9]. dynamically generate hash value of the name attribute and

The automatic classification of web pages is divided send to the web browser. The web browser includes its
into four steps. The first step is the detection of hash value into its repository [11].
encrypted code. In this step the encoding in the form of
hexadecimal, decimal, octal and reference characters that SQL Injection Attacks: Penetration Testing and Fault
fall under the range of ASCII and extended ASCII Injection is applied to emulate the XSS attack. The testing
encoding are identified. Second step is the decoding is done via Scanner SOAP UI tool. This tool injects
phase where the web page is decoded by routines that scripts through the add-on security testing and analysis
perform alternative encoding conversion to ASCII format resulting in the response from server and finally
in order to make the text intelligible and enable the classifying the responses in the web services as
analysis and extraction of other features. This aims at the vulnerable or not by injection of XSS attack. A fault
extraction of features that are hardly detected in its injector WSInject is used to emulate XSS by acting as a
encrypted state. The third step is the webpage decoding proxy between the client and servers. The interception
in which the extraction of decoded features is performed. and modification of SOAP message exchange are
In this stage features are extracted based on transparent between client and servers. There is no need
HTML/Javascript schemes and suspicious patterns. of source code to be altered or viewed and only constraint

Features related to code encryption only cannot is that client and server has to be connected through the
determine whether the code is malicious because the proxy [7]. Attributes based on hybrid static and dynamic
alternative encodings are used in non-malicious code. The code analysis that characterize input validation and
next step is the classification step that aims to classify sanitize code patterns for predicting vulnerabilities related
web page sample as XSS or non XSS. To accomplish a to SQL injection and cross site scripting. For a security
classifier a set of training samples is provided to the sensitive program statement the hybrid attributes are
classifier which designs a predictive model. Machine collected and their nodes are classified from its data
learning methods such as Naive Bayes and SVM have dependency graph. This method is used to build effective
been used for classification. Naive Bayes and SVM deal vulnerability predictors using both supervised and
with the set of labelled sample data that includes both unsupervised learning methods. It is shown that the
positive and negative samples that are infected with XSS hybrid attributes predict vulnerabilities more accurate
code or not. The experiments were performed using Dmoz than static analysis [12]. An integrated model to prevent
and ClueWeb09 dataset as non-XSS web pages while SQL injection attacks and reflected cross-site scripting
XSSed pages are used as malicious samples [10]. have been proposed. This model is divided in to two
KameleonFuzz a black box XSS fuzzer is proposed to modes safe mode and a production mode environment. In
exploit XSS. This generates malicious inputs and detect safe mode a security query model for SQL injection and
vulnerability status. The input generation and evolution sanitizer model for reflected XSS for each of the identified
is achieved with genetic algorithm guided by an attack SQL queries and input entry points for the reflected cross
grammar. A double taint inference permits to detect site scripting attacks. In production environment input
precisely whether an exploitation attempt is succeeded. entries that create dynamic SQL queries are validated

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3752

against security query model generated in safe mode and traversing the tree from root to leaf node. These
normal input text entered by the user is validated by classification methods are a classic way to represent the
sanitizer model instrumented in the code at safe mode [13]. data from a machine learning algorithm that offers a

Detection Algorithms data.
Machine Learning Algorithm: Genetic Algorithm:
Genetic Algorithms are optimization heuristics that are Dynamic Hash Algorithm: Dynamic Hash Generation
inspired by natural evolution from biology. At first an Technique is used to generate the hash of value of name
initial population composed of random set of input values attribute in the cookie. Other attributes are kept constant.
are evolved until maximum number of generations or final Steps followed in Dynamic Hash Algorithm are:
solution is found. For each iteration subset of current The user on web browser side submits the User-ID
population is selected to form next one by giving more and password to the web server of the web
chances to the individual that produce final results application
(Individuals with higher fitness). Selected individuals are The web server submits the corresponding
made to produce offspring by crossing over their information from the browser and generates a cookie.
chromosomes and mutating them to breed next Now the web server will dynamically generate hash
population. Here the individuals are turned to HTML value of name attribute in the cookie and store both
requests for the application by encoding them in to values in the form of a table on the server side.
corresponding URL with the values passed by GET by Subsequently the web server will send the hash
representing scheme name = value. Fitness function is value of the name attribute in the cookie in the web
calculated such that the amount of target branches that browser
are executed when the application is run with the current The web browser will store the hash value to the
individual as population. One point crossover strategy is repository.
adopted and mutation changes the value of parameter
randomly. Since the cookies at the browser database are not

Data Mining Algorithms: Naive Bayes and SVM: Naive XSS attack will not be able to impersonate the user using
Bayes is a statistical method that makes classification stolen cookies which are converted in to hash form. If the
decisions by calculating probabilities and costs related to browser wants to reconnect to the web server as a part of
each decision. The Bayesian classifiers follows the feature active connection it has to include cookie with its
conditional independence by assuming that a feature corresponding request to the web server. The web server
value on a given class is independent of the values of will use the information in the table to rewrite back the
other features. For example in order to classify a sample values of name attribute in the cookie to the original value
“x” the Bayes classifier first calculate the posterior generated by the web server.
probability. This classification mechanism achieved
higher recognition rate by keeping a low computational Experiments and Result Evaluation: This section
cost. SVM works by selecting a hyperplane that maximizes describes the database, algorithm performance and other
a class separating margin in order to divide samples in to parameters that are used to conduct experiments and the
different classes. The basic idea of SVM is to nonlinearly results are also presented. We have implemented the
map the original feature vector to a higher dimension approach using PHP.
space in which data can be linearly classified. SVM uses
kernel function which allows calculating the hyperplane Database: Naive Bayes and SVM works with set of
without performing mapping step. labelled sample data that include both positive and

Decision Tree: Decision tree is a common way to organize infected with XSS code or not. For the positive class
classification schemes. Every decision tree starts with a 15,000 websites were used. These samples are obtained
root node and consider it as the parent node for the other from XSSed database (http://www.xssed.com) with the
nodes. Each node in the tree evaluates an attribute to attacks occurred from December 2012 to March 2015. The
determine which path it should follow. The Decision tree negative samples are taken from Dmoz database. The
is tested by comparing a value against some constant. contents of web page are in English and are selected
Classification using Decision Tree is performed by randomly.

fast and powerful way to express the structures in the

valid because of the hash values being replaced, therefore

negative samples to detect whether the web pages are

()
TPDetection Rate

TP FN
=

+

()
()

TP TNAccuracy Rate
TP TN FP FN

+=
+ + +

()
FPFalse Alarm Rate

FP TN
=

+

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3753

Performance Measures: The 10-fold cross-validation was
used to evaluate the results. The goal of 10-fold cross-
validation is to predict and estimate how a correct model
will execute in practice. At first the original dataset is
divided into 10 folds. At each run one of the folds is used
as the test set and the other 9 folds are put together to
form the training set. This process is repeated for 10 times.
Confusion matrix is used as a metric for performance
measurement which enables the result assessment of
positive and false negatives. The confusion matrix shown
in Table I are based on the following measures.

(1)

(2)

(3)

Here TN – True Negative indicates the amount of
negative samples that are correctly classified and FN –
False Negative indicates the amount of malicious samples
classified as Negative, FP – (False Positive) indicates the
amount of negative samples classified as malicious and
TP – (True Positive) indicates the amount of malicious
samples correctly classified.

Classification Analysis
Naive Bayes and SVM: Naive Bayes is used with its
default configuration parameters. For SVM the polynomial
kernel degree is set to 1.0 and regularization parameter “C”
as 1.0 (as suggested in [10]). Both the classifiers SVM and
Naive Bayes achieved high performance in terms of
accuracy, detection and false alarm rate. Naive Bayes
provides low computational cost when compared to SVM.

Genetic Algorithm: A population of 70 individuals is
evolved for 500 generations. Keeping the 10% of best
individual as alive across generations. Execution is
stopped over 500 generations or the stopping condition
is met. Crossover and mutation probabilities are set to
P = 0.7 and P = 0.01 respectively. Genetic algorithms arec m

in fact, optimization heuristics that finds local optimum
from where improving further is difficult even with the
mutation operators. The approach based on the genetic
algorithm does not pass the sanity check while choosing
population at random search; hence it fails to generate
secure test cases. This proves that only easy to cover
vulnerabilities can be tested using genetic algorithm.

Table 2: Comparison of Results Obtained By Algorithms Taken for Study
Naive Genetic Dynamic

Classifier Bayes SVM Algorithm Hashing Technique
Detection Rate 95.32 94.09 94.98 98.01
Accuracy Rate 98.96 99.78 98.60 99.89
False Alarm 0.50% 0.25% 0.22% 0.02%

The genetic algorithm is fast and starts to converge over
200 generations to trap in local optima. The final outcome
of genetic algorithm states that simple vulnerabilities can
be tested and time required is also short.

Hashing Technique: We have implemented the Hash
technique with the help of PHP language. It is seen
through our experiments that web server is able to
generate hash of the value of name attribute for cookie
that the browser stores and return this value back to the
web server on every subsequent request. The attempt to
steal cookie information from browser database also fails
since the cookie contains the hash value and not the
session information. This technique fails if the attacker
finds the method used for randomly generating hash
value. For example if the hash code is interpreted as
follows:

Set- Cookie: SID = pqrs123

Set-Cookie: SID = abcd456 ; Domain = .trail.com; Path =
/area1

Set-Cookie: SID = lmno678; Domain = .trail.com; Path =
/area2

Also as suggested in [11] that this degrades the
performance of whole system as it is a server side
solution. This also increases latency and response time
and also cannot intercept the HTTPs and SSL
connections. Generating the hash value for the cookies in
HTTP header is present in real time applications. The
efficiency of the proposed approaches is tested including
all the features to compose feature vector to use for
classifiers. The dataset comprises of both the training and
testing dataset. Table II presents the results attained by
Genetic Algorithm, SVM, Naive Bayes and Hashing
Technique.

CONCLUSION

Increased use of web paradigm for developing web
applications opens a lot of ways for new security threats
against the application infrastructure. Hence Cross site

Middle-East J. Sci. Res., 24 (12): 3748-3754, 2016

3754

scripting is considered as serious vulnerability. Existing 6. Gupta, S. and B.B. Gupta, 2014. BDS: browser
traditional approaches to prevent vulnerabilities are not dependent XSS sanitizer. Book on Cloud-Based
sufficient thereby making the end users responsible for Databases with Biometric Applications, IGI-Global's
the protection of web services. Main cause of such attack Advances in Information Security, Privacy, and
is the unawareness of the user while accessing a web Ethics (AISPE) series, pp: 174-191.
page therefore XSS attacks are easy to launch and 7. Salas, M.I.P. and E. Martins, 2014. Security testing
difficult to prevent. Hence web application developers methodology for vulnerabilities detection of xss in
must use the support tools during deployment to web services and ws-security. Electronic Notes in
guarantee vulnerable free deployment. Theoretical Computer Science, 302: 133-154.

In this paper we focus on the problem of preventing 8. Duchene, F., Rawat, S., Richier, J.L. and Groz, R.,
XSS attack. We have presented a deep survey of the XSS 2014, March. KameleonFuzz: evolutionary fuzzing for
attacks with detection and prevention techniques. black-box XSS detection. In Proceedings of the 4th
Whether the attacks falls under persistent or non- ACM conference on Data and application security
persistent, there are many solution to solve the and privacy (pp. 37-48). ACM.
vulnerability problem. But some of these solutions may 9. Avancini, A. and M. Ceccato, 2013. Comparison and
have some failures and does not render enough security. integration of genetic algorithms and dynamic
The study reveals us that more improvement needs to be symbolic execution for security testing of cross-site
done in web application security to obtain better results scripting vulnerabilities. Information and Software

REFERENCES 10. Nunan, A.E., E. Souto, E.M. dos Santos and

1. Examples of system security vulnerabilities, Available cross-site scripting in web pages using document-
at: http:// www.crime-research.org/ news/05.05.2004/ based and URL-based features. In Computers and
241/html. Communications (ISCC), 2012 IEEE Symposium on

2. Web Application Security and the OWASP Top 10, (pp: 000702-000707). IEEE.
Available at:www.sapient.com/assets/ImageDown 11. Gupta, S., L. Sharma, M. Gupta and S. Gupta, 2012.
loader/813/Web_Application_Security.pdf. Prevention of cross-site scripting vulnerabilities

3. Hydara, I., A.B.M. Sultan, H. Zulzalil and using dynamic hash generation technique on the
N. Admodisastro, 2015. Current state of research on server side. International journal of advanced
cross-site scripting (XSS)–A systematic literature Computer Research (IJACR), 2(5): 49-54.
review. Information and Software Technology, 12. Shar, L.K., H.B.K. Tan and L.C. Briand, 2013, May.
58: 170-186. Mining SQL injection and cross site scripting

4. Gupta, S. and B.B. Gupta, 2015. Cross-Site Scripting vulnerabilities using hybrid program analysis. In
(XSS) attacks and defense mechanisms: classification Proceedings of the 2013 International Conference on
and state-of-the-art. International Journal of System Software Engineering (pp: 642-651). IEEE Press.
Assurance Engineering and Management, pp: 1-19. 13. Sharma, P., R. Johari and S.S. Sarma, 2012. Integrated

5. Johns, M., 2011. Code-injection Vulnerabilities in approach to prevent SQL injection attack and
Web Applications—Exemplified at Cross-site reflected cross site scripting attack. International
Scripting. It-Information Technology Methoden Journal of System Assurance Engineering and
und innovative Anwendungen der Informatik und Management, 3(4): 343-351.
Informationstechnik, 53(5): 256-260.

Technology, 55(12): 2209-2222.

E. Feitosa, 2012, July. Automatic classification of

