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Abstract: This paper presents a dual neural network based technique for detecting and classifying the power
quality disturbances. In the proposed method, Adaptive Linear Neural Network is used to extract the rms
voltage for harmonics and Interharmonics estimations. With the help of these indices, PQ disturbances such
as Sag, Swell, Outages are detected and classified, Harmonics and Interharmonics alongwith horizontal and
vertical histograms for a specified voltage waveform and Feed Forward Neural Networks are used for pattern
recognition in order to classify Spikes, Notches, Flicker and Oscillatory transients. Synthetic disturbance
waveforms are generated using the MATLAB parametric equations.
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INTRODUCTION S-transform extract important information from a

Power Quality: Power quality has become a very type of disturbance that caused power quality (PQ)
important issue over the past few decades. In order to problem to occur has been presented in [8]. Wavelet
improve power quality, the sources and causes of such based genetic algorithms has been used to monitor the PQ
disturbances must be known before the appropriate disturbances and their characters in [9]. Multiresolution
mitigating  actions can be taken. The windowed FFT S-transform has been used to distinguish the different
which is the time windowed version of discrete Fourier types of PQ disturbances The classification and
transform  has  been  applied  for  power quality analysis characterization of the disturbances are discussed in [10]
to  classify  a  variety  of disturbances in [1].Wavelet based on Parseval’s Theorem. A real time standard
based neural network classifier has been presented in [2] multifunction instrument has been used to measure the
for the learning vector quantization network and a PQ disturbances in [5]. 
decision  making  scheme. A combination of wavelet An  S-transform  based  SVM  has  been  discussed
packet energy entropy features and weighted support for  identifying  the  power  quality  disturbances in the
vector machines has been used to diagnose the Power test system [11]. A Hilbert transform shows greater
quality faults in [3] and also identify the real time immunity towards noise, it has been used for the
classification of power quality disturbances has been detection and classification of power quality events along
presented in [4]. A hybrid techniques of DWT and ANN with RBF network in [12]. An S-transform based fuzzy and
has been discussed for better performance in the Particle swarm optimization has been presented in [13] and
classification  of power quality events in [5]. and a this combines to identify the time series PQ disturbance
wavelet packet based algorithm has been illustrated in [6], data and also classified it. A rule based technique along
which is used to analysis the harmonics in the power with S-transform has been discussed in [14] An
supply. The DWT combine with PIC hardware has been ADALINE and FFNN based power quality analyzer in
used  to  detect  the voltage sag in the test system in [7]. which features are extracted using ADALINE and
In  order  to  identify  the  type  of   disturbance  present disturbances are classified using an FFNN and histogram
in  the  power  signal,  the  S-transform  based PNN. The is presented in this paper.

disturbance signal and trained by PNN to determine the
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Proposed System: The proposed methodology for Classification Stage: In this stage, Adaptive Linear
disturbance waveform classification and detection are Neural Network extracted features such as RMS voltage.
Performed by evaluating the value of the THD and RMS The horizontal and vertical histograms were extracted
value using ADALINE NN and classifying the through Feed Forward Neural Network, which has been
disturbance using Feed Forward NN based neural applied for classifying the disturbances.
classifier according to the evaluated values.

Features Extraction The case study of the Pure sine wave is shown in
Adaline (and) FFNN: An Adaline is a multi-input, single- Figures 1(a) to 1(d).
output, single layer linear neural element and its The case study of the Voltage sag is shown in
characteristics are Train on-line based on the changing Figures 2(a) to 2(d).
inputs and the target response; Self adaptive algorithm The case study of the Voltage swell is shown in
can be applied to the weights training; Simple structure Figures 5(a) to 5(d).
makes it easily implemented on hardware. A feed forward The case study of the Voltage Outages is shown in
neural network has one or more layers between input and Figures 6(a) to 6(d).
output layer. Except for the input nodes, each node is a The case study of the Sag with Harmonics is shown
neuron with a nonlinear activation function. FFNN utilizes in Figures 8(a) to 8(d).
a supervised learning technique called back propagation The case study of the Swell with Harmonics is shown
for training the network. in Figures 9(a) to 9(d).

Simulation Results:

Fig. 1(a): Voltage Signal 

Fig. 1(b): RMS Voltage
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Fig. 1(c):  Horizontal histogram

Fig. 1(d): Vertical histogram

Fig. 2(a): Voltage Sag
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Fig. 2(b): RMS Voltage

Fig. 2(c): Horizontal histogram

Fig. 4(d): Vertical histogram
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Fig. 5(a): Voltage Swell

Fig. 5(b): RMS Voltage

Fig. 5(c): Hortizontal histogram
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Fig. 5(d): Vertical histogram

Fig. 6(a): Voltage Outages

Fig. 6(b): RMS Voltage
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Fig. 6(c): Hortizontal histogram

Fig. 6(d): Vertical histogram

Fig. 7(a): Harmonics
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Fig. 7(b): RMS Voltage

Fig. 7(c): Hortizontal histogram

Fig. 7(d): Vertical histogram
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Fig. 8(a): Sag with Harmonics

Fig. 8(b): RMS Voltage

Fig. 8(c): Hortizontal histogram
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Fig. 8(d): Vertical histogram

Fig. 9(a): Swell with Harmonics

Fig. 9(b): RMS Voltage
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Fig. 9(c): Hortizontal histogram

Fig. 9(d): Vertical histogram 

Fig. 10(a): Flicker
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Fig. 10(b): RMS Voltage

Fig. 10(c): Hortizontal histogram

Fig. 10(d): Vertical histogram
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Fig. 11(a) and 11(b): Flicker and RMS Voltage

Fig. 11(c): Hortizontal histogram
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Fig. 11(d): Vertical histogram

The case study of the Flicker is shown in Figures
10(a) to 10(d).

The case study of the Harmonics is shown in Figures
7(a) to 7(d).

The case study of the Notch is shown in Figures
11(a) to 11(d).

RESULTS AND DISCUSSION

Fig. 12: Bar diagram for the percentage of accuracy of the
proposed method

Table 3: Classification accuracy 
Sno Power Quality Disturbances Input features Percentage of accuracy
1 Pure Voltage signal 100 100
2 Voltage Sag 100 92
3 Voltage Swell 100 98
4 Outages 100 100
5 Harmonics 100 96
6 Sag with Harmonics 100 92
7 Swell with Harmonics 100 98
8 Flicker 100 98
9 Notch 100 100

Overall accuracy 97.11

CONCLUSION

Detection and classification of the power quality
disturbances has been done by the proposed Adaptive
Linear Neural Network and Feed Forward Neural Network
based technique. The disturbance waveforms were
generated through parametric equations. Features such as
RMS voltage, horizontal and vertical histogram were
extracted through Adaptive Linear Neural Network and
Feed Forward Neural Network has been applied for
classifying the disturbances. It has also been found that
all the nine disturbances were classified accurately by the
proposed method and it is well suitable for real world
applications were the classifier is applied over the data
captured in field. Neural Network is a versatile classifier
that can be trained for any input combination and its
application makes the suggested technique particularly
suitable for classification of disturbances of varying
nature.
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