
Middle-East Journal of Scientific Research 23 (9): 2135-2144, 2015
ISSN 1990-9233
© IDOSI Publications, 2015
DOI: 10.5829/idosi.mejsr.2015.23.09.22514

Corresponding Author: Dr. K.V. Arul Anandam, Department of MCA, Govt. Thirumagal Mills College,
Gudiyatham-632602, Vellore, Tamil Nadu, India.

2135

Distributed Data Mining and Dynamic Load Balancing Algorithms in
Cluster of Novel Mobile Agent Frameworks Using TCP

S. Kavitha and K.V. Arul Anandam1 2

Research Scholar in Computer Science Research and Development Centre, Bharathiar University,1

Coimbatore - 641 046, and Assistant Professor, SRM University, Chennai, Tamil Nadu, India
Department of MCA, Govt. Thirumagal Mills College, Gudiyatham-632602, Vellore, Tamil Nadu, India2

Abstract: The Load balancing is an important one for the development of parallel and distributed computing
applications and also improves the efficiency and performance of distributed system by allowing load migration
for the purpose of efficient resource utilization. The aim of the distributed system is sharing of resources.
Mobile agents provide a novel technology for implementing load balancing mechanism on the cluster of
workstation. It is intelligent software program which migrates in heterogeneous network. The mobile-agent
based approach can minimize the network traffic and enhance the flexibility of a load balancing mechanism.
Load balancing is a computer networking method to distribute workload evenly across two or more computers,
network links, CPUs, hard drives or other resources. It aims to optimize resource use, maximum throughput,
minimize response time and avoid overload of any of the resources. Load balancing is good resource utilization.
A Dynamic load balancing algorithm in green parallel and distributed computing using mobile agent is proposed
and compared with the client-server load balancing algorithm and shown efficiency of the algorithm.

Key words: Mobile Agent Load Balancing Green Computing Parallel and Distributed Computing TCP

INTRODUCTION transmitting, save network bandwidth and overcome

Mobile agent technology provides a more efficient transfer computations into data fields. The second reason
solution then the client-server based approach in terms is to improve the reliability that the mobile agent can be
of management of distributed resources. Traditional executed asynchronously and independently on
technologies achieve communication among distributed destination nodes. The third reason is to improve the
resources by using location transparency, while mobile adaptability that the mobile agent is intelligent, mobile,
agents provide local interaction for communication and flexible and active so it can complete assigned tasks
mobile logic facilities. It migrates on remote hosts and substituting origin host. It can also adopt according to
performs different operations. It can be effectively used in the changing of environment and respond to it.
many areas with several reasons including improvements Load balancing is dividing the amount of work that a
in latency and bandwidth of client-server applications as computer has to do between two or more computers so
well as reducing vulnerability to network disconnection that more work gets done in the same amount of time and
[1]. Mobile logic and local interaction, load balancing, low in general, all users get served faster [2]. It can be
traffic in the network and flexibility are the important implemented with hardware, software or a combination of
reasons that sustain the use of mobile agents for the both. It requires multiple servers and also usually
management of distributed resources. Mobile agent can combined with failover and use backup services. The
improve load balancing for three reasons as follows. advantages of load balancing is to equalize the workload
The first reason is to improve the efficiency and among the nodes by minimizing execution time, minimizing
performance that the mobile agent can reduce data communication delays, maximizing resource utilization,

network latency because it can more independently and

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2136

maximizing throughput, improve performance, decreasing Response Time: It is the amount of time taken to respond
consumption of system resources and distributing users
across available servers based on requirements for
workgroup and load sensitivity [3]. There are two factors
which help to achieve green computing in load balancing
of cluster of computers. First factor is reducing energy
consumption: Load balancing helps in avoiding
overheating by balancing the workload across all the
nodes of cluster of computers, hence reducing the amount
of energy consumed. Second factor is reducing carbon
emission [4]. Energy consumptions and carbon emissions
are directly proportional to each other. The more the
energy consumed, higher is the carbon footprint. The
energy consumption is reduced with the help of load
balancing so; the carbon emission is also reduced. Then
can achieve green computing [5].

The link between energy consumption and
carbon emission has increased due to the demand of
ever-increasing computing and storage problems
arising in the internet age which is improve energy-
efficiency in parallel and distributed computing and to
achieve green computing [6]. Load balancing assist to
achieve a higher user satisfaction and resource utilization
ratio and also improving the overall performance and
utilization of resource of the systems in distributed
environment [7].

The followings are the Load balancing Metrics which
is consider at the development of algorithm in green
cluster.

Throughput: It is used to calculate the number of tasks
whose execution has been completed. It should be high to
improve the system performance.

Overhead Associated: It determines the amount of
overhead involved while implementing a load-balancing
algorithm. It includes overhead due to movement of tasks,
inter-processor and inter-process communication. It
should be minimized.

Fault Tolerance: It is the ability of an algorithm to
perform uniform load balancing in case of link failure.
The load balancing should be a good fault-tolerant
technique.

Migration Time: It is the time to migrate the jobs or
resources from one node to other. It should be minimized
in order to enhance the performance of the system. It
should be minimized.

by a particular load balancing algorithm in a distributed
system.

Resource Utilization: It is used to check the utilization of
resources. It should be optimized for an efficient load
balancing.

Scalability: It is the ability of an algorithm to scale
according to the requirement.

Performance: It is used to check the efficiency of the
system. This has to be improved at a reasonable cost, e.g.,
reduce task response time while keeping acceptable
delays.

The main aim of using mobile agent in the load
balancing is that it could be successfully utilized in
increasing the system performance with the following
reasons. Mobile Agent reduces the network load. i.e., it
visits all nodes in cyclic manner instead of all-to-all
communication. It encapsulates protocols. i.e., Protocols
defined for task exchange that can be encapsulated in the
agent. It executes asynchronously and autonomously.
i.e., the agent’s creator is free after agent’s creation and
dispatching. It adapts dynamically. i.e., the agent will react
according to current situation. It is heterogeneous in
nature. i.e., the load balancing could be applied to
heterogeneous systems. It is robust and fault-tolerant. i.e.,
if a host or link is being shut down, all agents could
change their paths and continue their operation on
another host in the network.

The rest of this paper is organized as follows. In the
section that follows, some concepts of load balancing
with mobile agent is briefly reviewed. Section 2 shows the
node structure in distributed load balancing. Section 3
present novel mobile agent model of distributed dynamic
load balancing. Section 4 represent novel mobile agent
model of distributed in cluster. Section 5 discussed the
TCP package in distributed load balancing. Section 6
proposed distributed dynamic load balancing algorithm in
green cluster using mobile agent model. Section 6
discussed the experimental analysis. Finally section 7
summarizes the main contributions of this paper.

Node Structure in Distributed Dynamic Load Balancing:
Each node needs to exchange status information with
every other node in the system. There are four policies
or strategies in dynamic load balancing. Fig. 1 illustrates
the structure of the node in distributed load balancing
[8, 9].

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2137

Fig. 1: Node Structure in Distributed Load Balancing

Transfer Policy: The policy which selects a job for the Interface Agent on behalf of Actor. Message
transferring from a local node to a remote node is referred Manager handles the messages passed between actors.
to as Transfer policy or Transfer strategy. It is dynamic in Delayed Message Manager holds the messages for
nature. Each node will be computing its extra workload Mobile Agent while they are moving from one site to
with reference to average load in the system. This module another site. Actor Manager manages the state of actors
executes two predefined policies like local and global. that are currently executing and also the locations of
According to the response time of the job, it submitted mobile actors created on the site. Actor Manager act as an
the job for execution. If the response time of job at local agent that have four policies to assign the loads evenly
site is less than the global site then local policy is and also proper utilization of resources and energy that
executed otherwise global policy is executed. leads to the green computation. Space provides middle

Selection Policy: It identified the processors involved in services. The mail addresses or names of all agents are
the load exchange. This module calculates the CPU, not globally known in the open agent system and also an
Memory and I/O of each resource on a particular node. agent may not have the other agent’s addresses with

Location Policy: It refers to the strategy used in finding services need to be supported. Transport Manager
an appropriate task transfer partner. It is mostly used the contains a public port for message passing between
polling approach. Overloaded nodes will identify different sites. Transport Sender on the same platform
randomly set of under loaded nodes. It selects a receives the message from the Message Manager and
destination node for a transferring the task. If the node is delivers it to the Transport Receiver in the different site.
failure, connection established to the backup node and Facilitator agent acts as a load balancer. It collects
assign the task to that node because of avoiding information’s from all site’s databases and submit to the
searching time for assigning task to another node clients database. (Global mining). Fig. 2 describes the
otherwise communication cost will increase. novel mobile agent technology that used in distributed

Information Policy: It collects information about the
nodes in the system and also provides details about the Novel Mobile Agent Model of Distributed Dynamic Load
nodes to another node for further processing. It has Balancing in Cluster: This model consists of cluster of
system idle, CPU, Memory and Input/output etc. details. novel mobile agent models with large distributed network.
It updates the status every changes in the system Each model has local databases for storing the large size
utilization. of data after processing the data with unlimited nodes.

Novel Mobile Agent Model of Distributed Dynamic which is obtained from all nodes and leaves the processed
Load Balancing: Mobile Agent is a light-weight Agent data in the corresponding local databases because to
because it carries only the instructions which are given by improve the speed of migration from one node to another

agent services such as matchmaking and brokering

whom it needs to communicate. For this, middle agent

dynamic load balancing concepts [10].

In this model, mobile agent only carries the instruction

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2138

Fig. 2: Novel Mobile Agent Model of Distributed Dynamic Load Balancing

Fig. 3: Novel Mobile Agent Model of Distributed Dynamic Load Balancing in Cluster

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2139

node and also reduce the mobile agent container size. MA initialize with the load state in the server, perform
Finally, Mobile agent returns to the home. Every home
node act as server for the main server and continue the
above processes. Each model connected with the backup
server whenever server failure which is easily connected
to the backup servers for avoiding unnecessary
communication in the network and also time consuming.
It makes proper load balancing with the use round robin
algorithm and also priority based allocation of loads
among the servers [11, 12]. Proper load balancing leads to
the reduction of energy consumption and carbon
emission that leads to the green computing [11]. Fig. 3
shows Novel Mobile Agent Model of Distributed
Dynamic Load Balancing in Cluster.

Novel Mobile Agent based Distributed Data Mining
Algorithm in Cluster:

Notations:

DB - Database.
N - Number of Rows.
I - Partition of Database.
D - Number of Transaction.
n - Number of sites (S1, S2, < Sn).
DBi - Distributed Data sets at Si, DB =U DBi, i= 1 to

n.
X.Sup - Support count of a X at DB –Global.
X.Supi - Support count of a X at DBi –Local.
Minsup - Minimum support threshold.
GFI - Global Frequent Item Set.
CGFI - Candidate Global Frequent Item Set.
X - Global Frequent Item iff, X.Sup>= minsup * D.
X - Local Frequent Item iff, X.supi>= minsup * Di.
LFI I - Local Frequent Item set at site-i.
PGFI - Possible Global Frequent Item Sets- These are

item sets at sites-i, which are not part of LFI i,
but by adding these count at central place
converts.

CGFI - Cluster Global Frequent Item Sets. These are
item sets at novel mobile agent model-i, which
are not part of LFI i, but by adding these
count at central place converts.

Input: Distributed-Data-Set DBi i=1 to n, minsup,
Distributed sites’ address.

Output: Global Frequent Item set – GFI

Mobile Agent (MA) launches from Agent Submitter
Interface based on the client to all sites.

the local functions, save the current states and store
the task in the local data ware-house.

for i=1 to n do

{MA.send (Location=I, S=Support, Address of all
distributed sites);}

Agent Submitter Interface assigns the work to fa-
cilitator agent and facilitator agent partition the work
into all the sites. It is done in parallel.

for I=1 to N begin

{ Assign the data to each site from partition I; }

MA has the number of nodes to visit and do the step
2 processes in every node up to reach the last node.
Likewise MA move all the server, do all tasks and
store in the local data warehouse.
If it is the last node and last server, it returns to the
home.
Each Cooperative MAi Computes LFII in parallel from
each local database, PGFI and their count at each
site.

for I=1 to n do
{If frequent present then
Compute LFII
else

PGFI j=all sites = All Item Sets at site-j LFIi, i=1 to n,
} i<>j

Send LFI to facilitator agent and also send count of
PGFIi, i=1 to n, to facilitator agent from each
infrequent site.
Compute GFI and CGFI at facilitator agent. GFI=
LFIi,i=1 to n; CGFI= LFIi - LFIi, i=1 to n.
Calculate GFI at facilitator agent using PGFI count.

for all X CGFI do

{If X.Sup= X.Sup I, i=1 to n>=MinSup*D then { GFI=GFI
 {X}}}

Note: Step 9 and step 10 are performed in parallel.
Note: Step 1 to 10 is done parallel in each frame work
separately.

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2140

GFI of each novel mobile agent send to the Timers: TCP needs to keep track of its operations.
corresponding client (Local Home).
Global Facilitator Agent calls the above steps from 1
to 10 and performs the task in parallel. Finally,
collects the CGFI and send to the user for viewing
the result from the client.

TCP Package in Distributed Load Balancing: TCP is a
stream-service, connection-oriented protocol with an
involved state transition diagram and uses flow and error
control. The TCP package can simulate the heart of TCP
as represented by state transition diagram [13].

Transmission Control Blocks (TCBs): TCP uses a
structure to hold information about each connection for
controlling the connection. TCP keeps an array of TCBs
in the form of a table because any time there can be
several connections. This is referred to as TCB.

Fields Includes in Each TCBs Using TCP Connection:

State – It defines the state of the connection according to
the state transmission diagram.
Process – It defines the process using this connection at
this machine as a client or a server.
Local IP address – It defines the IP address of the local
machine.
Local Port Number – It defines the local port number.
Remote IP address – It defines the IP address of the
remote machine.
Remote Port Number – It defines the remote port number.
Interface – It defines the local interface.
Local Window – It comprise several subfields and holds
information about the window at the remote TCP.
Remote window - It comprise several subfields and holds
information about the window at the remote TCP.
Sending sequence number – It holds the sending
sequence number.
Receiving sequence number – It holds the receiving
sequence number.
Sending ACK number – It holds the value of the ACK
number sent.
Round-trip time – Several fields may be used to hold
information about the RTT.
Time-out values – Several fields can be used to hold the
different time-out values such as the retransmission time-
out, persistence time-out, keep alive time-out.
Buffer size – It defines the size of the buffer at the local
TCP.
Buffer Pointer – It is a pointer to the buffer where the
receiving data is kept until it is read by the application.

Main Module: The main module is invoked by an arriving
TCP segment, a time-out event or a message from an
application program. The action is to be taken depends on
the current state of the TCP so it is a very complicated
module.

Input Processing Module: Input processing module
handles all the details needed to process data or an
acknowledgment received when TCP is in the
ESTABLISHED state. It sends an ACK if needed takes
care of the window size announcement, does error
checking.

Output Processing Module: Output processing module
handles all the details needed to send out data received
from application program when TCP is in the
ESTABLISHED state. It handles retransmission time-outs,
persistent time-outs and so on.

State Transition Diagram for Both Client and
Server: It keeps track of all different events happening
during connection establishment, connection
termination and data transfer. The TCP software is
implemented as a finite state machine. A finite state
machine that goes through a limited number states.
The machine is in one of the states. It remains in that state
until an event happens. The event can take the machine
to a new state. At the same time, the event can also make
the machine perform some actions. This is shown in
Fig. 4 and also Table 1 is list out the states and
description for TCP.

TCP Connection: A connection –oriented transport
protocol establishes a virtual path between the source
and destination. The followings are the phases of
transmissions [14].

Connection Establishment: TCP transmits data in
full-duplex mode. When two TCPs in two machines are
connected, they are able to send segments to each other
simultaneously. i.e., each party must initialize
communication and get approval from the other the other
party before any data is transferred. The connection
established in TCP is called three-way handshaking.
For example, an application program (Client) wants to
make a connection with another application program
(Server) using TCP as the transport layer protocol.

1
iThreshold value of a node (n) *

N

i
i

W
C

N
==
∑

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2141

Fig. 4: TCP Package

Fig. 5: TCBs

Table 1: States for TCP
State Description
CLOSED There is no connection.
LISTEN Passive open received; waiting for SYN.
SYN-SENT SYN sent; waiting for ACK.
SYN-RCVD SYN+ACK sent; waiting for ACK.
ESTABLISHED Connection established; data transfer in progress.
FIN-WAIT-1 First FIN sent; waiting for ACK.
FIN-WAIT-2 ACK to first FIN received; waiting for second FIN.
CLOSE-WAIT First FIN received, ACK sent; waiting for application

to close.
TIME-WAIT Second FIN received, ACK sent; waiting for 2MSL

time-out.
LAST-ACK Second FIN sent; waiting for ACK.
CLOSING Both sides have decided to close simultaneously.

Data Transfer: After connection is established,
bidirectional data transfer can take place. The client and
server can send data and acknowledgments in both
directions.

Connection Termination or Connection Reset: Any
of the two parties involved in exchanging data
(client and server) can close the connection, although
it is usually initiated by the client. There are two
options for connection termination that are three-way
handshaking and four-way hand=shaking with a half-
close option. Connection Reset is that the TCP at one
end may deny a connection request, may abort a
connection or may terminate an idle connection. All of
these are done with the RST (reset) flag. Connection
establishment and termination and Connection

termination using three-way handshake are shown in
Fig. 5. and Fig. 6 respectively.

Distributed Dynamic Load Balancing Algorithm in
Green Cluster Using Mobile Agent Model
Calculation of Threshold Value: The threshold value of
a node is the limiting value of its workload and is used to
decidewhether a node islightly or heavily loaded. The
threshold value of a node may be determined as follows:

W – Amount of workload of a node.i

N – Number of node in our system.
C – Predefine constant value depends on thei

processing capability of node n .i

Distributed Dynamic Load Balancing Algorithm Using
Mobile Agent Model in TCP: Load balancing algorithms
have two goals. 1. To improve the load distribution. 2.
To minimize the communication for achieving the proper
load balancing. The load balancing algorithm is
implemented in the TCP package because to reduce the
communication among the nodes for load balancing and
also introduce the back-up server whenever the main
server was failure [15, 16].

Receive: a TCP segment, a message from an application or
a time-out event.

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2142

1. Search the TCB table. 1). Send a FIN segment.
2. If (corresponding TCB is not found) 2). Change the state to FIN-WAIT-1.

1. Create a TCB with the state CLOSED. 3. If (RST or SYN segment received)
3. Find the state of the entry in the TCB table. 1). Issue an error message.
4. Case (state) 4. If (data or ACK segment received)

Closed: RequestResources (no-of-resources, amount-of-workload)
1. If (“passive open” message from application received) { rs = Query resources information from the nodes;

1). Change the state to LISTEN. Sort the available resources with amount-of-workload by
2. If (“active open” message from application received) ascending order;

1). Send a SYN segment. i = 1;
2). Change the state to SYN-SENT. while (rs.next() && i <= no-of-resources) {

3. If (any segment received) if (node.WL + amount-of-workload < thresholdvalue){
1). Send an RST segment. // if query is local then executes in local nodes otherwise

4. If (any other message received) in global nodes based on response time;
1). Issue an error message. // Round Robin algorithm for allocation of resources.

5. Return. if (node.status =”Failure”){

SYN-SENT: Node is in sleep state;
1. If (time=out) URLLIST[i][0] = backupnode.HOST_ID;

1). Change the state to CLOSED. URLLIST[i][1] = backupnode.HOST_ADDRESS;}
2. If (SYN segment received) else

1). Send a SYN + ACK segment. {Back-up node is in sleep state;
2). Change the state to SYN-RCVD. URLLIST[i][0] = node.HOST_ID;

3. If (SYN + ACK segment received) URLLIST[i][1] = node.HOST_ADDRESS; }
1). Send an ACK segment. Current_workload = node.WL + amount-of-workload;
2). Change the state to SYN-RCVD. Update the Current_workload to the relevant address;}

4. If (any other segment or message received) i++; }
1). Issue an error message. return URLLIST;}

5. Return. 5. If (“send” message from application received)

SYN-RCVD: 6. Return.
1. If (ACK segment received)

1). Change the state to ESTABLISHED. FIN-WAIT-1:
2. If (time-out) 1. If (FIN segment received)

1). Send an RST segment. 1). Send an ACK segment.
2). Change the state to CLOSED. 2). Change the state to CLOSING.

3. If(“close” message from application received) 2. If (FIN + ACK segment received)
1). Send a FIN segment. 1). Send an ACK segment.
2). Change the state to FIN-WAIT-1. 2). Change the state to TIME-WAIT.

4. If(RST segment received) 3. If (ACK segment received)
1). Change the state to LISTEN. 1). Change the state to FIN-WAIT-2.

5. If any other segment or message received) 4. If (any other segment or message received)
1). Issue an error message. 1). Issue an error message.

6. Return. 5. Return.

ESTABLISHED: FIN-WAIT-2:
1. If (FIN segment received) 1. If (FIN segment received)

1). Send an ACK segment. 1). Send an ACK segment.
2). Change the state to CLOSE-WAIT. 2). Change the state to TIME-WAIT.

2. If (“close” message from application received) 2. Return

Connection established with the Back-up node;

1). Result obtained after processing the queries.

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2143

Fig. 6: Performance Scale Up of Different Algorithms with introduced for proper load balancing which is in sleep
Number of Nodes and Response Time mode. When the server is failure, back-up node set into

CLOSING: server set to sleep mode for power management. In the
1. If (ACK segment received) traditional algorithm, when the server sent failure notice,

1). Change the state to TIME-WAIT. communication time increases for again search of another
2. If (any other segment or message received) node to process. Here, the communication overhead is

1). Issue an error message. reduced because of the introduction of the back-up node.
3. Return The load balancing is proper among the cluster of

TIME-WAIT: carbon emission among nodes. Mobile agent can improve
1. If (time-out) the load balancing because of improving efficiency and

1). Change the state to CLOSED. performance, reliability and adoptability. Mobile Agent
2. If (any other segment or message received) reduces the network load because it visits all nodes in

1). Issue an error message. cyclic manner instead of all-to-all communication. Energy
3. Return consumption should be well-managed by optimal routing

CLOSE-WAIT: routing instructions are clearly defined in the mobile agent
1. If (“close” message from application received) The TCP package also introduced because of full-duplex

1). Send a FIN segment. service, connection-oriented service and reliable service.
2). Change the state to LAST-ACK. It has three-way hand shaking communication so;

2. If (any other segment or message received) unnecessary communication among nodes is avoided.
1). Issue an error message. All these concepts are used for the proper load balancing

3. Return that leads to green clusters.

LAST-ACK: CONCLUSION
1. If (ACK segment received)

1). Change the state to CLOSED. This paper describes the framework of our proposed
2. If (any other segment or message received) efficient distributed data mining and load balancing

1). Issue an error message. techniques using mobile agent in green cluster computing
3. Return for high speed computing and optimum resource

Performance Analysis: The load balancing algorithms are Our proposed algorithm use mobile agent to distribute
implemented in java programming with RMI concept. As work load in a cluster. The mobile agent can travel cyclic
illustrated Fig. 6 that shows the performance scalability manner among the hosts in a network and also carry the
and also proper allocation of loads among the nodes. It instructions about the details of the network of
also indicates the improvement of the novel mobile agent disconnection environment. According to the preliminary
load balancing algorithm than the client server and mobile results, system gives a good results and something to be
agent based load balancing algorithms. The novel mobile modified to reach the target. The results will be discussed
agent based load balancing algorithm using TCP is used in detail in future work.

for allocating the works properly among the nodes. This
proper load balancing leads to increase the network life
because of the individual nodes energy saving and also
energy consumed is much less as compared to the other
load balancing algorithms.

DISCUSSION

The cluster novel mobile agent framework with
distributed data mining algorithm is introduced with
parallel and distributed processing. The back-up node is

active mode and it accepts the task for the process but

computers that leads to reducing the usage of power and

designs. This is achieved by the mobile agent because

utilization with reduction of energy and carbon emission.

Middle-East J. Sci. Res., 23 (9): 2135-2144, 2015

2144

REFERENCES 9. Aakanksha and Punam Bedi, 2007. Load balancing on

1. Yun Yali, Yaping Li and Haixiao Han, 2012. A Mobile 0-7695-3059-1/07 () IEEE DOI
Agent-based Secure and Efficient task Allocation 10.1109/ADCOM.2007.27, pp: 553-558.
Algorithm for Cloud and Client Computing, 2012 10. Kavitha S., K. Senthil Kumar and K.V. Arul Anandam,
Fourth international Conference on Multimedia 2014. Mobile Agent Model with Efficient
Information Networking and Security, pp: 1-3, 978-0- Communication for Distributed Data Mining, S.
7695-4852-4, IEEE, DOI 10.1109/MINES.2012.30. Sathiakumar et al. (eds.), Proceedings of International

2. Chechina Natalia, Peter King and Phil Trinder, 2010. Conference on Internet Computing and Information
Using Negotiation to Reduce Redundant Communications, Advances in Intelligent Systems
Autonomous Mobile Program Movements, 2010 and Computing 216, DOI:10.1007/978-81-322-1299-
IEEE/WIC/ACM International Conference on Web 7_39, ©Springer India ISBN: 978-81-322-1298-0 (Print)
Intelligence Agent Technology, pp: 343-346, 978-0- 978-81-322-1299-7 (Online), pp: 421-429.
7695-4191-4,() IEEE, DOI 10.1109/WI-IAT.2010.22. 11. Nehra Neeraj, R.B. Patel and V.K. Bhat, 2006. A

3. Htwe Thandar Su Nge, Aye Thida and Pa Pa Nyunt, Multi-Agent system for Distributed Dynamic Load
2011. Mobile Agents Based Load Balanced Resource Balancing on Cluster,pp:135-138, 1-4244-0716-8, IEEE.
Scheduling System, 978-1-61284-840-2, IEEE, 486-489. 12. Gondhi Naveen Kumar and Dr. Durgesh Pant, 2009.

4. Barazandeh Iman and Seyed Saeedolah Mortazavi, An Evolutionary Approach for Scalable Load
2009. Two Hierarchical Dynamic Load Balancing Balancing in Cluster Computing, pp: 1259-1264, 978-1-
Algorithms in Distributed Systems, 2007 Second 4244-2928-8, IEEE International Advance Computing
International Conference on Computer and Electrical Conference (IACC 2009).
Engineering, 978-0-7695-3925-6/09, IEEE, DOI 13. Forouzan Behrouz A., Data Communications and
10.1109/ICCEE.2009.253, pp: 516-521. Networking’, Fourth Edition, McGraw-Hill Higher

5. Lin Kai, Min Chen, Sherali Zeadally and Joel J.P.C. Education (McGraw-Hill Forouzan Networking
Rodrigues, 2011. Balancing energy consumption with Series), New York, ISBN 978-0-07-296775-3 - ISBN 0-
mobile agents in wireless sensor networks, Future 07-296775-7.
Generation Computer Systems, Elsevier, DOI 14. Forouzan Behrouz A., TCP/IP Protocol Suite’, Third
10.1016/j.future.2011.03.001, 28: 446-456. Edition, TATA McGraw-Hill Publishing Company

6. Hussin Masnida, Young Choon Lee and Albert Y. Limited, Third Edition, New Delhi, ISBN 0-07-296772-
Zomaya, 2011. Priority-based scheduling for large- 2.
scale distribute systems with energy awareness, 15. Deng Huafeng, Zhong Linhui and Ye Maosheng,
IEEE Ninth International Conference on Dependable, 2010. An efficient load balancing algorithm in
Autonomic and Secure Computing, 978-0-7695-4612- distributed systems’, 2010 International Forum on
4/11, DOI 10.1109/DASC.2011.96, 503-509. Information Technology and Applications, 978-0-

7. Mayuri A. Mehta, 2012. Designing an Effective 7695-4115-0/10, IEEE DOI 10.1109/IFITA.2010.285,
Dynamic Load Balancing Algorithm Considering pp: 397.
Imperative Design Issues in Distributed Systems, 16. Kavitha, S. and K.V. ArulAnandam, 2014. Distributed
International Conference on Communication Systems Dynamic Load Balancing in Green Cluster of Mobile
and Network Technologies, 978-0-7695-4692-6/12 Agent Frameworks Using TCP, International
IEEE DOI 10.1109/CSNT.2012.92, pp: 397-401. Symposium on Research Innovation for Quality

8. Nehra, Neeraj and R.B. Patel, 2007. Towards dynamic Improvement in Higher Education 2014, Paper id
load balancing in heterogeneous cluster using mobile PID:2307, The Research and Development Centre
agent, 2007 International Conference on together with Social Science, Science and Arts
computational intelligence and multimedia Departments of Bharathiar University, Coimbatore.
applications, 0-7695-3050-8/07 () IEEE DOI
10.1109/ICCIMA.2007.209.

dynamic networking using mobile process group,

