
Middle-East Journal of Scientific Research 23 (8): 1598-1603, 2015
ISSN 1990-9233
© IDOSI Publications, 2015
DOI: 10.5829/idosi.mejsr.2015.23.08.22429

Corresponding Author: P. Ezhilarasu, Department of Computer Science and Engineering,
Hindusthan College of Engineering and Technology, Coimbatore-641032, India.

1598

Huffman Coding for Lossless Data Compression-A Review

P. Ezhilarasu, N. Krishnaraj and V. Suresh Babu1 2 3

Department of Computer Science and Engineering, 1

Hindusthan College of Engineering and Technology,
Coimbatore-641032, India

Department on Information Technology, Valliammai Engineering College,2

Kattankulathur, Chennai 603203, Tamilnadu, India
Department of Electronics and Communication Engineering, 3

Hindusthan College of Engineering and Technology,
Coimbatore - 641032, India

Abstract: In this paper, we discuss Huffman coding data compression techniques. Two type of input taken.
First, input with similar probability of unique characters is considered. Then, input with different probability
of unique characters is considered. Its compression ratio, space savings and average bits also calculated. Each
condition compared with other conditions.

Key words: Huffman Compression Encoding Decoding

INTRODUCTION Input data = 240 MB

Data compression defined as the rearrangement = 240 * 1024 * 8 kb
of data in such a way that, the size of the target data is Transfer rate = 30 kbps
less than that of the size of the input data. The So time taken for
decompression technique used to get the source data. transfer of data = (240 * 1024 * 8) / 30
After decompression if some data unavailable, then = 8 * 1024 * 8
the compression called as lossy compression. If none = 65536 seconds
of the data missed, then the compression called as
lossless compression. The Huffman coding comes If the given data compressed into 40MB, then the
under lossless compression. Each compression time taken for transfer will be 10923 seconds.
technique looks for two important aspects. Those are If the destination allowed amount of storage is 60GB,
complexity in terms of time and space. then the target machine can store the following number of

Because of data reduction, only small amount of time files by using the equation 2.
needed for data transfer between source and destination.
For instance, if the volume of the source data is 240MB Total number of files can be stored = Total amount of
and the transfer rate is 30 kbps. The time need for the storage / Volume of the file (2)
transfer obtained by the given equation 1.

Time needed for transfer of data = Input data / (1GB = 1024 MB)
transfer rate = 60 GB / 240 MB

(1 MB = 1024 KB and 1 KB = 8 kb) (1) =256 files

= 240 * 1024 KB

= 60 * 1024 MB / 240 MB

Middle-East J. Sci. Res., 23 (8): 1598-1603, 2015

1599

Therefore, the destination system can store 256 files delineated an introduction into the various areas of
for uncompressed data. coding algorithms, both lossless and lossy, with
For compressed file, it can store theoretical and mathematical background information [7].

= 60 * 1024 MB / 40 MB techniques.
= 1.5 * 1024
= 1536 files. Huffman Encoding: In the field of data compression,

The compression ratio affects both the space and Huffman coding is a bottom up approach.
time complexity. It calculated by using the following
equation 3. Algorithm:

Compression ratio = Uncompressed original data /
Compressed Data (3) Get the input data.

Read the data character by character.
= 240 MB / 40 MB Identify unique characters and its occurrences.
= 6:1 Find the probability of each unique character.

Space savings also calculated by using compressed code table. The least probable characters placed at
and uncompressed data. It obtained by using the the right of the code table.
following equation 4. Find the two least most probability

Space savings = 1- (Compressed Data/Uncompressed (occurrence) characters. Create a tree for that, two
original data) (4) characters.

In compression, we have the following types The right part assigned the value 1 and the left part

Lossy compression. Apply step six and seven recursively to the
Lossless compression. remaining list until all unique character grouped

In this paper, we discuss Huffman lossless data one.
compression algorithm.

Related Work: A Huffman code is a particular type of we have eight, unique characters (m1, m2, m3, m4, m5, m6,
optimal prefix code that is commonly used for lossless m7, m8) with occurrences are 20,20,15,15,10,10,5,5. The
data compression [1].. Shannon-Fano coding technique probability (P) of each unique character given as (p1, p2,
was developed independently by Shannon and Fano. p3, p4, p5, p6, p7, p8) given in the equation 5.
Initially Shannon introduced the concept in 1948 [2] and Probability of a character (P) = Occurrence of the
later the message encoding was implemented by Fano in character / Total length of the message (5)
1949 [3]. Huffman coding, an algorithm developed by The probability of the unique characters (m1, m2, m3,
David A. Huffman while he was a Ph.D. student at MIT m4, m5, m6, m7, m8) calculated as (p1, p2, p3, p4, p5, p6,
and published in the 1952 paper "A Method for the p7, p8) using the equation 4 and is given in the coding
Construction of Minimum-Redundancy Codes" [4]. table as given in the Table 1.
Huffman coding produces better optimal code than The probability of each unique character is always
Shannon-Fano coding. Mark Nelson and Jean-loup Gailly between zero and one. Here the highest probability is 0.2
[1995] represented the basics of data compression and the least is 0.05. Initially the list is having eight
algorithms. It includes lossless and lossy algorithms [5]. unique characters m1, m2, m3, m4, m5, m6, m7, m8. The
David Salomon [2000] explained many different sum of the probability is one. The grouping done by
compression algorithms altogether with their uses, grouping two least probability characters, as marked as
limitations and common usages. He gave an overview on bold and given in table 1. The process illustrated in the
lossless and lossy compression [6]. Khalid Sayood [2000] Table 2-8.

Many books [8-11] published about the data compression

Shannon–Fano coding is a top down approach. Whereas,

Write the most probable characters to the left of the

assigned the value 0.

into a single group with the collective probability of

Basic Example: If in a message (M), whose length is 100

Middle-East J. Sci. Res., 23 (8): 1598-1603, 2015

1600

Table 1: Coding table for the message(M) with unique characters(m1,m2,m3,m4,m5,m6,m7,m8)
CHARACTER m1 m2 m3 m4 m5 m6 m7 m8
OCCURRENCE 20 20 15 15 10 10 5 5
PROBABILITY 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05

Table 2: Grouping of m7, m8
CHARACTER m1 m2 m3 m4 m5 m6 m7(0),m8(1)
OCCURRENCE 20 20 15 15 10 10 10
PROBABILITY 0.2 0.2 0.15 0.15 0.1 0.1 0.1

Table 3: Grouping of m6, m7, m8
CHARACTER m1 m2 m6(0), m7(10), m8(11) m3 m4 m5
OCCURRENCE 20 20 20 15 15 10
PROBABILITY 0.2 0.2 0.2 0.15 0.15 0.1

Table 4: Grouping of m4, m5
CHARACTER m4(0), m5(1) m1 m2 m6(0), m7(10), m8(11) m3
OCCURRENCE 25 20 20 20 15
PROBABILITY 0.25 0.2 0.2 0.2 0.15

Table 5: Grouping of m3, m6, m7, m8
CHARACTER m6(00), m7(010), m8(011), m3(1) m4(0), m5(1) m1 m2
OCCURRENCE 35 25 20 20
PROBABILITY 0.35 0.25 0.2 0.2

Table 6: Grouping of m1, m2
CHARACTER m1(0), m2(1) m6(00), m7(010), m8(011), m3(1) m4(0), m5(1)
OCCURRENCE 40 35 25
PROBABILITY 0.4 0.35 0.25

Table 7: Grouping of m3, m4, m5, m6, m7, m8
CHARACTER m6(000), m7(0010), m8(0011), m4(10), m5(11), m3(01) m1(0), m2(1)
OCCURRENCE 60 40
PROBABILITY 0.6 0.4

Table 8: Grouping of m1, m2, m3, m4, m5, m6, m7, m8
CHARACTER m6(0000), m7(00010), m8(00011), m4(010), m5(011), m3(001),m1(10), m2(11)
OCCURRENCE 100
PROBABILITY 1.0

Table 9: Huffman Encoding for given input
Message m1 m2 m3 m4 m5 m6 m7 m8
Probability 20 20 15 15 10 10 5 5
Encoding vector 10 11 001 010 011 0000 00010 00011

The encoding vector derived from the table 8 and The size of the input as uncompressed
given in the Table 9.

The total number of bits needed = 800 bits

= 20 *2 + 20 *2 + 15*3 + 15*3 +10*3 The size of the compressed data using binary coding
+10*3 + 5*5 +5*5 =100*3=300 bits.
=40+40+45+45+30+30+25+25 A.
=280 bits B. ADVANCED EXAMPLE

= 100 * 8

Middle-East J. Sci. Res., 23 (8): 1598-1603, 2015

1601

Table 3: Huffman coding character occurrence for the given input Table 6: Size of the compressed data for the given input
S.no Symbol Occurrence Probability S.NO Unique Character Occurrence Encoding Vector Total Length
1. Space character “ ” 16 0.115108 1. Space character “ ” 16 011 48
2. e 14 0.100719 2. e 14 101 42
3. i 13 0.093525 3. i 13 111 39
4. a 13 0.093525 4. a 13 0000 52
5. r 12 0.086331 5. r 12 0001 48
6. n 10 0.071942 6. n 10 0100 40
7. d 6 0.043165 7. d 6 1101 24
8. t 6 0.043165 8. t 6 00100 30
9. o 5 0.035971 9. o 5 00111 25
10. h 4 0.028777 10. h 4 11000 20
11. m 4 0.028777 11. m 4 11001 20
12. s 3 0.021583 12. s 3 001100 18
13. u 3 0.021583 13. u 3 001101 18
14. g 3 0.021583 14. g 3 001010 18
15. U 3 0.021583 15. U 3 001011 18
16. E 2 0.014388 16. E 2 010110 12
17. C 2 0.014388 17. C 2 010111 12
18. . 2 0.014388 18. . 2 010100 12
19. l 2 0.014388 19. l 2 010101 12
20. v 2 0.014388 20. v 2 100010 12
21. b 2 0.014388 21. b 2 100011 12
22. c 2 0.014388 22. c 2 100000 12
23. D 1 0.007194 23. D 1 1001010 7
24. P 1 0.007194 24. P 1 1001011 7
25. G 1 0.007194 25. G 1 1001000 7
26. S 1 0.007194 26. S 1 1001001 7
27. B 1 0.007194 27. B 1 1001110 7
28. z 1 0.007194 28. z 1 1001111 7
29. p 1 0.007194 29. p 1 1001100 7
30. f 1 0.007194 30. f 1 1001101 7
31. y 1 0.007194 31. y 1 1000010 7
32. , 1 0.007194 32. , 1 1000011 7

Table 5: Encoding vector for each unique characters for the given input
S.no Unique Character Probability Encoding Vector
1. Space character “ ” 0.115108 011
2. e 0.100719 101
3. i 0.093525 111
4. a 0.093525 0000
5. r 0.086331 0001
6. n 0.071942 0100
7. d 0.043165 1101
8. t 0.043165 00100
9. o 0.035971 00111
10. h 0.028777 11000
11. m 0.028777 11001
12. s 0.021583 001100
13. u 0.021583 001101
14. g 0.021583 001010
15. U 0.021583 001011
16. E 0.014388 010110
17. C 0.014388 010111
18. . 0.014388 010100
19. l 0.014388 010101
20. v 0.014388 100010
21. b 0.014388 100011
22. c 0.014388 100000
23. D 0.007194 1001010
24. P 0.007194 1001011
25. G 0.007194 1001000
26. S 0.007194 1001001
27. B 0.007194 1001110
28. z 0.007194 1001111
29. p 0.007194 1001100
30. f 0.007194 1001101
31. y 0.007194 1000010
32. , 0.007194 1000011

Input: “Dr. Ezhilarasu Umadevi Palani obtained his Under
Graduate degree in Computer Science and Engineering
from Bharathiar University, Coimbatore.”

The input placed between “ ”. The input has 139
characters with 32 unique characters. Each unique
character has some occurrences, as shown in table 3.

The probability and encoding vector of each unique
character represented in the Table 5.

The size of the compressed data derived from the
Table 5. It is given in the Table 6.

The given input after encoding will be

10010100001010100010110100111111000111010101000000
01000000110000110101100101111001000011011011000101
11011100101100000101010000010011101100111100011001
00000011101001011101011110001110011000110010110100
11011010001011100100000010000110100110100000010010
10111101101001010000110110101111101000110101110011
11100110011000011010010010100010111001001100000111
10101001000001010110000010011010110101100100001010
11101001011010001111010000101001110011010001001111
10010111001110110000000000100000010011000111000000
01011001011010011110001010100010011001110010010000
10100001101101011100111111110011000110000001000011
10001101010100

Middle-East J. Sci. Res., 23 (8): 1598-1603, 2015

1602

The total number of bits needed is 614 bits. Step2:

The size of the input as uncompressed

= 139 * 8
= 1112 bits

The size of the compressed data using binary coding
 =695 bits.

Huffman Decoding: The Huffman decoding
implemented by replacing the encoding vector from
the starting of the input. i.e., 1001010 replaced by D and
so on. The decoding process stops after step number
139(no of characters).

Input after Encoding:

10010100001010100010110100111111000111010101000000
01000000110000110101100101111001000011011011000101
11011100101100000101010000010011101100111100011001
00000011101001011101011110001110011000110010110100
11011010001011100100000010000110100110100000010010
10111101101001010000110110101111101000110101110011
11100110011000011010010010100010111001001100000111
10101001000001010110000010011010110101100100001010
11101001011010001111010000101001110011010001001111
10010111001110110000000000100000010011000111000000
01011001011010011110001010100010011001110010010000
10100001101101011100111111110011000110000001000011
10001101010100

Input after Decoding: Step4:
Step1
D000101010001011010011111100011101010100000001000
00011000011010110010111100100001101101100010111011
10010110000010101000001001110110011110001100100000
01110100101110101111000111001100011001011010011011
01000101110010000001000011010011010000001001010111
10110100101000011011010111110100011010111001111100
11001100001101001001010001011100100110000011110101
00100000101011000001001101011010110010000101011101
00101101000111101000010100111001101000100111110010
11100111011000000000010000001001100011100000001011
00101101001111000101010001001100111001001000010100
00110110101110011111111001100011000000100001110001
101010100

Dr01010001011010011111100011101010100000001000000
11000011010110010111100100001101101100010111011100
10110000010101000001001110110011110001100100000011
10100101110101111000111001100011001011010011011010
00101110010000001000011010011010000001001010111101
10100101000011011010111110100011010111001111100110
01100001101001001010001011100100110000011110101001
00000101011000001001101011010110010000101011101001
01101000111101000010100111001101000100111110010111
00111011000000000010000001001100011100000001011001
01101001111000101010001001100111001001000010100001
10110101110011111111001100011000000100001110001101
010100

Step3:

Dr.01011010011111100011101010100000001000000110000
11010110010111100100001101101100010111011100101100
00010101000001001110110011110001100100000011101001
01110101111000111001100011001011010011011010001011
10010000001000011010011010000001001010111101101001
01000011011010111110100011010111001111100110011000
01101001001010001011100100110000011110101001000001
01011000001001101011010110010000101011101001011010
00111101000010100111001101000100111110010111001110
11000000000010000001001100011100000001011001011010
01111000101010001001100111001001000010100001101101
01110011111111001100011000000100001110001101010100

Dr.E1001111110001110101010000000100000011000011010
11001011110010000110110110001011101110010110000010
10100000100111011001111000110010000001110100101110
10111100011100110001100101101001101101000101110010
00000100001101001101000000100101011110110100101000
01101101011111010001101011100111110011001100001101
00100101000101110010011000001111010100100000101011
00000100110101101011001000010101110100101101000111
10100001010011100110100010011111001011100111011000
00000001000000100110001110000000101100101101001111
00010101000100110011100100100001010000110110101110
011111111001100011000000100001110001101010100

Middle-East J. Sci. Res., 23 (8): 1598-1603, 2015

1603

Step 5: CONCLUSION

Dr.Ez110001110101010000000100000011000011010110010 The obtained results depicts that the input with the
11110010000110110110001011101110010110000010101000 similar probability gives better compression ratio, space
00100111011001111000110010000001110100101110101111 savings and average bits than the input with the different
00011100110001100101101001101101000101110010000001 probability. The Huffman code gives better compression
00001101001101000000100101011110110100101000011011 ratio, space savings and average bits as compared with
01011111010001101011100111110011001100001101001001 the uncompressed data.
01000101110010011000001111010100100000101011000001
00110101101011001000010101110100101101000111101000 REFERENCES
01010011100110100010011111001011100111011000000000
01000000100110001110000000101100101101001111000101 1. http://en.wikipedia.org/wiki/Huffman_coding
01000100110011100100100001010000110110101110011111 2. Shannon, C.E., 1948. “A mathematical theory of
111001100011000000100001110001101010100 communication”, Bell System Technical Journal,

27: 379-423, 623-656.
Step 6-139: 3. Fano, R.M., 1949. “The transmission of information”,

Dr.Ezhilarasu Umadevi Palani obtained his Under Electronics, M.I.T., Cambridge, Mass.
Graduate degree in Computer Science and Engineering 4. Huffman, D.A., 1952. "A Method for the
from Bharathiar University, Coimbatore. Construction of Minimum-Redundancy Codes",

RESULTS AND DISCUSSION pp: 1098-1102. Huffman's original article.

The compression ratio, space savings and average Compression Book”, M and T Books, New York,
bits calculated for the two examples are Basic Example (8 United States of America, 2 edition, pp: 541.
unique characters). 6. David Salomon, 2000. “Data Compression:

Compression ratio = 800/280 Heidelberg, United States of America, Germany, 2
= 20:7 edition, pp: 823.
=2.85:1 7. Khalid Sayood, 2000. “Introduction to Data

Space savings =1-(280/800) Compression”, Morgan Kaufmann Publishers,
= 1-(7/20) Burlington, United States of America, 2 edition,
= 1-0.35 pp: 600.
= 0.65 8. David Salomon and Giovanni Motta, 2000.
= 65% “Handbook of Data Compression”, Springer London.

 Average bits = 280/100 9. Storer, J.A., 1988. “Data Compression”,
= 2.8 bits per Computer Science Press, Rockville, MD.

character 10. Blelloch, E., 2002. “Introduction to Data
Compression”, Computer Science Department,

 Advanced Example (32 unique characters) Carnegie Mellon.
11. Lynch, J. Thomas, 1985. “Data Compression:

Compression ratio = 1112/614 Techniques and Applications”, Lifetime Learning
= 556:307 Publications, Belmont, CA.
=1.81:1

 Space savings =1-(614/1112)
= 1-(307/556)
= 1-0.552
= 0.448
= 44.8%

 Average bits = 614/139
=4.42 bits per

character

Technical Report 65, Research Laboratory of

Proceedings of the I.R.E., September 1952,

5. Mark Nelson and Jean-loup Gailly, 1995. “The Data

nd

The Complete Reference”, Springer, New York, Berlin,
nd

nd

