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Abstract: In this paper, we study a model for an atomic system described by a moving three-level Λ-type 
atom and one-mod radiation field. The model describes multi-photon processes and includes the 
nonlinearities Kerr-like medium. Also, the coupling parameters are taken in time -dependent. We used the 
Schrödinger equation in solving this problem. The solution is obtained when the atom is initially in a 
superposition coherent state. The momentum increment and the field entropy of coherent field of this 
atomic system are calculated. The effects of the detuning, the Kerr-like medium and the time-dependent 
coupling on the collapses-revivals and the entanglement phenomena are discussed. The momentum 
increment as well as the entropy squeezing are considered and it has been shown that existence of the time 
dependent coupling parameter leads to a time delaying in the interaction which is twice the delay time for 
the independent case. 
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INTRODUCTION 

 
 The interaction between electromagnetic fields and 
matter (atoms) lies at the heart of quantum optics. After 
more than three decades the Jaynes -Cummings Model 
(JCM) [1] is still the best model to represent this 
concept. This model is one of the exactly solvable 
models describing the interaction between a two-level 
atom and a single mode cavity field. Also, this model 
has been realized experimentally [2]. Moreover, it has 
various extensions such as; an atom has three, four or 
five effective levels while the field has one or only a 
few cavity modes. In particular, the formalism of the 
JCM for a three-level atom under different 
configurations (Vee (V), Cascade (Ξ) and Lambda (Λ)) 
interacting with a single or two-mode cavity field has 
been demonstrated [3-5]. Also, some of these 
extensions are based on considering the multiphotons 
transitions [6, 7], the atom field coupling in intensity [8, 
9] and the Kerr-like medium [10]. Moreover, it is 
shown that the Schrödinger equation can be solved 
exactly in the Rotating Wave Approximation (RWA) 
[11]. A Kerr-like medium can be modeled by an 
harmonic oscillator [10, 12]. The Kerr nonlinearity 
corresponds to a Hamiltonian is quadratic in the photon 
number operator. Physically, the model with Kerr-like 
medium may be realized as if the cavity contains two 
different species of Rydberg atoms of which one 

behaves like a harmonic oscillator in the field and the 
other interacts with the field mode. 
 Over the years, the JCM has also been extended to 
include the atomic motion along the axis of the cavity 
[13]. Also, an extension of the standard JCM has been 
made to include atomic external effects due to 
quantization of atomic motion, where the center-of-
mass motion of an atom is cooled extremely low 
temperature, so vibrational motion is quantized [14]. 
The statistics of the atomic external and internal 
quantities such as the radiation force and atomic 
momentum for the Raman-coupled JCM are studied [15, 
16].  Also,  the  interaction  between  a  moving three-
level Λ-type atom with one and two-mode cavity field 
containing a Kerr-like medium in this cavity are 
investigated [17, 18]. These investigations are 
considered where the atom is initially prepared in a 
momentum eigenstate and the field is in the squeezed 
state. The atomic system consists of a moving 
Rubidium atom interacting with a single mode cavity 
field is discussed [19]. Moreover, the interaction of a 
moving N-level ladder type atom and (N-1)-mode 
cavity field in the resonant case is discussed [20]. 
Recently, the system consists of a four-level ladder type 
in a momentum eigenstate coupled with a single mode 
cavity field in the presence of nonlinearities of both the 
intensity-dependent coupling is explored [21]. Also, the 
non-resonant interaction of a moving four-level N-type 
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atom with three-mode cavity field in the existence of a 
nonlinear Kerr-like medium is studied [22]. On the 
other hand, the phase distribution depends on the 
coherent field intensity and the detuning parameter is 
explored [23]. Also, the properties of the entropy and 
phase of the field in the two-photon JCM with an added 
Kerr medium are studied [24]. Furthermore, a method 
to accelerate the revivals, undoing the dynamics by a 
suitable manipulation of the two-level system, more 
specifically by a quasi-instantaneous change of its 
phase has been shown [25].  
 More recently, the nonclassical properties of the 
state and dynamics of entropy of a Λ-type three-level 
atom interacting with a single -mode cavity field with 
intensity-dependent coupling in a Kerr medium is 
explored [26]. Also, a model of a three-level atom in 
the Λ-configuration interacting with a two -mode field 
under a multi-photon process is considered [27]. A 
semi -classical versus quantum description of the ground 
state of three-level atoms interacting with a one-mode 
electromagnetic field is studied [28]. Moreover, the 
quantum entanglement and position-momentum 
entropic squeezing of a moving Lambda-type three-
level atom interacting with a single-mode quantized 
field with intensity-dependent coupling is investigated 
[29]. The interaction between a Λ-type three-level atom 
and two quantized electromagnetic fields which are 
simultaneously injected in a bichromatic cavity 
surrounded by a Kerr medium in the presence of field-
field interaction (parametric down conversion) and 
detuning parameters is considered [30]. Furthermore, 
the dynamics of a pair of short laser pulse trains 
propagating in a medium consisting of three-level Λ-
type atoms by numerically solving the Maxwell-
Schrödinger equations for atoms and fields is discussed 
[31]. Now, we turn our attention to give the importance 
of the three-level quantum systems. The importance lies 
in that it describes the essential physics of radiation-
matter interaction. Some authors discussed the 
collapses and revivals phenomena [32-35]. Also, the 
two-photon excitation [36-38] and two-photon laser [39, 
40] have been investigated. Moreover, the squeezed 
light [41-44], chaos [45], coherence trapping [46, 47] 
and optical communications [48] have been 
demonstrated.  Recently, the entanglement of the atom 
field and quantum entropy has been discussed [17]. The 
entanglement has been used in quantum information 
such as super coding [49] and quantum teleportation 
[50]. 
 

DESCRIPTION OF THE MODEL 
AND SOLUTION 

 
 The considered system consists of a moving three-
level  Λ-type  atom  interacts  with a single mode cavity  

 
field with frequency Ω . The atom has upper state |1〉, 
intermediate state |2〉 and lower state |3〉 with energies 
ω1, ω2 and ω3, respectively. We suppose that the 
allowed transitions |1〉↔|2〉 and |1〉↔|3〉 while the 
transition |2〉↔|3〉 is forbidden. The Hamiltonian 
describing the non-resonant atom-field interaction 
including the center of mass of the atom beside the 
presence of the Kerr-like medium is given by  
 
                   A F AF

ˆ ˆ ˆ ˆ ˆH H H H Hχ= + + +  (1) 

 
where Ĥχ  is the non-linearity term, A F

ˆ ˆH (H )  is the 

Hamiltonian of the atom (field) and AFĤ  is the 

interaction Hamiltonian, for simplicity, we set 1=h . In 
the RWA these terms are:  
 

†2 2ˆ ˆ ˆH a aχ = χ  

 
2 3

A j jj
j 1

PĤ
2M =

= + ω σ∑
r

 

 
                                    †

F
ˆ ˆ ˆH a a= Ω  (2) 

and  

                
( )
( )

m imkr †m i m k r
AF 1 12 21

m imkr †m i m k r
2 13 31

ˆ ˆ ˆˆ ˆH (t) a e a e

ˆ ˆ(t) a e a e

⋅ − ⋅

⋅ − ⋅

= λ σ + σ

+ λ σ + σ

r rr r

r rr r  (3) 

 
where, P,k

rr
 and r

r
are the momentum, the propagation 

vector and the position vector, respectively, χ is the 
dispersive part of the third-order nonlinearity of the 
Kerr medium, ( )tλ l  is the effective coupling parameter 

and taking cos( t),λ = ε δl l l where ( 1,2)ε =l l  is an 
arbitrary constant ( the constant coupling parameter), m 
is multiplicity of photons . In what follows, we shall 
present some interesting properties of the atom (field) 
operators of the considered model. The operators ijσ̂  

are the generators of the unitary group satisfying the 
following commutation relations:  
 
     ij k i jk kj iˆ ˆ ˆ ˆ, , σ σ = σ δ − σ δ l l l

m †m
k kˆ ˆˆ ˆa , a , 0   σ = σ =   l l   (4) 

 
where  δij  is  the  Kroneker  symbol  and  σij|j〉=|i〉. Also, 
the operators â  and †â  satisfy the canonical 

commutation relation †ˆ ˆa,a 1  =   while [ ] † †ˆ ˆ ˆ ˆa,a a ,a 0 = =  . 

In the general form it is easy to show that:  
 

             †m †(m 1)ˆ ˆ ˆa,a ma ,−  =   † m ( m 1 )ˆ ˆ ˆa , a ma −  = −   (5) 
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 Moreover, the field operators satisfy the following 
relations:  

m n!
â n n m n m

(n m)!
= − >

−
 

                        † m (n m)!
â n n m

n!
+

= +  (6) 

 To obtain the wave function |ψ(t)〉 at any time t>0, 
we write it as a linear combination of the states 

0P ,1,n ,
r

0P mk,2,n m− +
rr

 and 0P mk,3,n m ,− +
rr

 where 

0P
r

 is the momentum eigenstate, |j〉 denotes jth atom 

level and n is the photon number of the field. Thus, we 
consider 
 

      

{

}

1 2

3

i t i t
n 0

n 0

0

i t
0

(t) q A(n,t)e P,1,n B(n,t)e

P mk,2,n m

C(n,t)e P mk,3,n m

∞
− γ − γ

=

− γ

ψ = +

× − +

+ − +

∑
r

rr
rr

 (7) 

where  
2

0
1 1

P
n

2M
γ = + ω + Ω

r
 

 

                 
2

0
1 1

(P mk)
(n m)

2M+ +

−
γ = + ω + Ω +l l

rr
 (8) 

 
 The quantities A(n,t), B(n,t) and C(n,t) are the 
probability amplitudes and qn is defined as  
 
                      ( ) n / 2

nq exp n / 2 n / n!= −  (9) 

 
where n  is the initial mean photon number. Applying 
Schrödinger equation, we obtain the following system 
of coupled ordinary differential equations:  
 

1 2i t i t
1 1 1 2 2iA(t) VA(t) fB(t)cos( t)e fC(t)cos( t)e∆ ∆= + δ + δ% %% %&  

 
1i t

2 1 1iB(t) VB(t) fA(t)cos( t)e− ∆= + δ %%&  

 
                 2i t

2 2 2iC(t) VC( t ) fA(t)cos( t)e− ∆= + δ %%&  (10) 

and 
1V n(n 1)= χ −  

 
2V (n m)(n m 1)= χ + + −  

 
(n m)!

f
n!
+

= εl l
%  

 

              
2 2

0
1 1

mk P m k
m

M 2M+

⋅
∆ = ω − ω + Ω − +l l

r r
%  (11) 

 
 It should be noted that when 0,δ =l  then the 

coupling parameter between the atom and the field is 
constant as shown in [17]. We employ an 
approximation where the rapid oscillating terms can be 
ignored. This can be achieved if one can adjust the 
detuning so that the difference between ∆l and the 

parameter δ l  becomes too small (slowly oscillating 

term), the coupled differential equation (10) becomes  
 

( ) ( )1 1 1 1 2 2 2 2i( ) t i( )t i( ) t i( )t
1 1 2iA(t) VA(t) fB(t) e e fC(t)e e∆ + δ ∆ − δ ∆ +δ ∆ − δ= + + + +% % % %&  

 

( )1 1 1 1i ( ) t i ( ) t
2 1iB(t) VB(t) fA(t) e e− ∆ − δ − ∆ + δ= + +% %&  

 

            ( )2 2 2 2i ( ) t i ( ) t
2 2iC(t) VC(t) f A ( t ) e e− ∆ −δ − ∆ + δ= + +% %&  (12) 

where 
1

f f
2

=l l
%  

 As one can see there are two exponential terms in 
each equation: one is rapidly oscillating terms 
exp i( )t δ + ∆ l l

%  and the other is slowly varying terms 

exp i( ) t δ − ∆ l l
% . In this case if we neglect the rapidly 

varying term compared with the slowly varying term, 
then (12) reduces to:  
 

1 2i t i t
1 1 2iA(t) VA(t) fB(t)e fC(t)e∆ ∆= + +&  

 
1i t

2 1iB(t) VB(t) fA(t)e − ∆= +&  
 

                        2i t
2 2iC(t) VC(t) fA(t)e − ∆= +&  (13) 

where 
∆ = ∆ − δl l l

%  
 
 This approximation is physically acceptable and it 
may be compared with the well known RWA. It is 
interesting to point out that such approximation has 
been used extensively to derive several physical models, 
for instance the frequency converter and parametric 
amplifier models. To solve the coupled system (13) we 
consider that the atom and the field are initially 
prepared in superposition state and coherent state, 
respectively. In this case the initial wave function can 
be written as;  
 

( ) ( ) i
n

n 0

(t 0) q cos 1,n sin e 3,n m
∞

Ψ

=

 ψ = = θ + θ + ∑  (14) 
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where Ψ  is the relative phase of the two levels. It is 
obvious that for θ = 0 and (π/2), the atom is initially in 
the upper (lower) state |1〉 (|3〉), respectively.  
 Firstly, we consider that the Kerr medium is absent 
and the system in the off-resonance case (∆ = ∆l ). 

Hence, the probability amplitudes under these initial 
conditions have the form;  
 

{ }
i t

i2
2

sin t
A(t) e cos cos t i cos 2f e sin

2

∆
Ψ γ

= θ γ − ∆ θ + θ γ 
 

 

( )( )

( )
( )

i t
2

i1
22 2

1 2

i
2

f e
B(t) 2f e sin cos 2 cos t i sin t

f f

2cos 2i sin t cos t

2 2f e sin cos 2 cos

− ∆

Ψ

Ψ

= θ + ∆ θ γ γ + ∆ γ+

+ θ γ γ + ∆ γ

− γ θ + ∆ θ − ∆ θ

 

 

  

( )( )

( )
( )

i t
2

i2
22 2

1 2

i i
2

f e
C(t) 2fe sin( ) cos( ) 2 cos( t) i sin( t)

f f

2cos( ) 2i sin( t) cos( t)

2 2fe sin( ) cos( ) 2 cos( ) e sin( )

− ∆

Ψ

Ψ Ψ

= θ + ∆ θ γ γ + ∆ γ+

+ θ γ γ +∆ γ

− γ θ + ∆ θ − ∆ θ − θ 

 (15) 

 
where  

2
2 2

1 2f f
2
∆ γ = + + 

 
 

 
 Now, let us consider that the more general case 
when detuning and nonlinearity take place in the 
interaction. In this case, the probability amplitudes are 
given by 
 

j2

3
i ti ( ) t

j j 2
j 1

A e C ( V)e µ∆ − δ

=

= − µ +∑  

 

( )( ) j2 1

3
i tji( ) t 2

j 2 j 2 1 2
j 1 2 1

C
B e V V f e

f f
µ∆ − ∆

=

 = µ + µ + ∆ + − ∑  

 

                                   j
3

i t
j

j 1

C C e µ

=

= ∑  (16) 

where 

                                   1 2
j

jk ji

C
ℜ + ℜ

=
µ µ

 (17) 

With 

( ) ( )( )i 2 2
1 2 2 2 k i k ie sin f V VΨℜ = θ + + µ + µ + µ µ  

 
              ( )( )2 2 1 2 2 k if cos V Vℜ = θ + + ∆ + µ + µ  (18) 
 

where jk j kµ = µ − µ  i j k 1,2,3≠ ≠ =  and µ satisfies the 

third-order equation  
 

                        3 2
1 2 3x x x 0µ + µ + µ + =  (19) 

 
The general expressions for these roots are given by  
 

          2
j 1 1 2

1 2 2x x 3x cos (j 1)
3 3 3

 µ = − + − ξ + − π  
 (20) 

with  

                  
( )

3
1 1 2 1 3

3 / 22
1 2

1 9 x x 2x 27x
cos

3 2 x 3x
−

 − − ξ =
 − 

 (21) 

where  
 

1 1 2 1 2x V 2V 2= + − ∆ + ∆  
 

( ) ( ) ( ) 2 2
2 2 1 2 1 2 2 1 2 1 1 2 1 2x V 3V V 2V V V V f f=∆ + −∆ + ∆ + + −∆ + − −  

 

          
( )

( )
2 1 2 1 2 2

2 2 2 2 12 2
1 2 1 1 2

V 3V
x V f ( )

V V f f

 ∆ + − ∆ + ∆
= − ∆ − ∆ 

+ − ∆ − −  
 (22) 

 
 In the next section, we shall obtain some statistical 
aspects of the formulated model such as the momentum 
increment and the field entropy. 
 

THE MOMENTUM INCREMENT 
 
 Let us first use the well known definition of the 
expectation value of any dynamical operator  
 

ˆ ˆO(t) ( t ) O (t)= ψ ψ  

 
and find for the generators σii are  
 
           11 A A ,σ =  22 B B ,σ =  33 C Cσ =  (23) 

with 
 

n
n 0

A q A ( t ) n
∞

=

= ∑  

 

n
n 0

B q B(t)n m
∞

=

= +∑  

 

                            n
n 0

C q C(t) n m
∞

=

= +∑  (24) 

 
 Also, the expectation value of the atomic 
momentum increment is given by 0P P P∆ = −

r r r
, it can 

be written as  
 
                        22 33ˆ ˆP mk  ∆ = − σ + σ 

rr
 (25) 
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Fig. 1: The time evolution of the momentum increment P∆

r
 versus the scaled time λt for different values of δ with 

m = 1, n 25=  and ∆1 = ∆1 = χ = 0 (a) δ = 0, (b) δ = 0.1 (c) δ = 0.3 and (d) δ = 0.9  
 
 To discuss the momentum increment, we plot 
several figures for different values of the given 
parameters. In all figures, we shall concentrate on the 
case θ = π/4, i.e. when the atom is initially in 
superposition state and take the relative phase Ψ = π/4, 
in addition to m = 1, the mean photon number n 25=  
and λ = λl .We plot the momentum increment 

( )22 33P / k∆ = − σ + σ
r

 versus the scaled time λt. Figure 

1(a-d) correspond to the momentum increment in the 
absence of both the detunings (∆1 = ∆2  =  0) and the 
nonlinear interaction of the Kerr-like medium (χ = 0). 
Whereas curves (a), (b), (c) and (d) corresponding to δ 
= 0, δ = 0.3, δ = 0.6 and δ = 0.9, respectively. From this 
Figure, we see that the momentum increment evolves 
periodically and the oscillations increase whereas the 
amplitudes decrease as the scaled time increases. This 
delaying time is in fact almost twice the usual time for 
the case of standard three-level atom via the 
modifications which have been introduced to the 
detuning parameters as a result of neglecting the fast 
oscillating term. 

 In the presence of the detuning parameter in off-
resonant case (∆1 = ∆2 = 10) with the absence of Kerr 
medium, Fig. 2, shows that the momentum increment is 
shifted upward and fluctuates around-0.59. The 
amplitude of the fluctuations in this case is less than the 
exact resonance case, however the revival period is 
observed to be elongated. We can say that the effect of 
time dependent coupling parameter leads to stronger 
interaction between the atom and the field where the 
atomic system in this case would store more energy. 
This is observed from the appearance of δ in the 
modified of the detuning parameters. 
 In Fig. 3(a-d), we consider the nonresonant case ∆1 
≠ ∆2. We plot the momentum increment for ∆1 = 5 and 
∆2 = 3, in the absence of the Kerr-like medium. We 
observed that the momentum increment is shifted 
upwards and fluctuates around-0.53 for the case δ = 0 
and around-0.49 for the case δ≠0. Furthermore, we 
noticed that from these curves the occurrence of 
collapse and revival depends upon the detuning 
parameters. However, the revival period is elongated 
and the collapse time increases |∆1-∆2| increases. 
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Fig. 2: The same as in Fig. 1 but for ∆1 = ∆2 = 10 
 

              

              
 

Fig. 3: The same as in Fig. 1 but for ∆1 = 5 and ∆2 = 3 
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Fig. 4: The same as in Fig. 1 but for χ = 0.3  
 

              

              
Fig. 5: The same as in Fig. 1 but for ∆1 = 3, ∆2 = 5 and χ = 0.3 
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 On the other hand, the amplitude of the oscillations 
decreases as |∆1+∆2| increases. Moreover, the amplitude 
of the fluctuations in this case is less than the exact 
resonance case. To examine the effect of the Kerr-like 
medium on the present system, we plot the momentum 
increment in Fig. 4(a -d) in the absence of the detuning 
parameter, taking into consideration the same values of 
the other parameters except χ = 0.3. In this case, we 
realize that the standard three level atom behavior (δ = 
0) where the momentum increment function fluctuates 
around -0.56, showing collapse and revivals and the 
Kerr-like medium acts like the detuning. As soon as the 
effect of the parameter δ leads to a slight decreasing in 
the revival period which means slight offset under the 
effect of the Kerr-like medium. The influence of the 
detuning parameters on the momentum increment in the 
presence of the Kerr nonlinearity can  be  seen  in  Fig. 
5 where χ = 0.3 and ∆1 = 5, ∆2 = 10. We observed from 
this figure the collapse and revival occur in the longest 
time as |∆1-∆2| increases as well as the amplitude of the 
oscillations decreases. We  conclude  that  the  detuning  
parameters  and  the Kerr-like medium changes the 
properties of the momentum increment. 
 

THE FIELD ENTROPY 
 
 In this section, we use the field entropy as a 
measurement of the degree of entanglement between 
the field and the atom of the system under consideration. 
Knight and co-workers [50] have developed a general 
method to calculate the various field eigenstates in a 
simple way. Using this method, we obtain the 
eigenvalues of the reduced density operator. Since the 
trace is invariant under a similarity transformation, we 
can go to a basis in which the density matrix of the field 
is diagonal and we can express the field entropy SF(t) in 
terms of the eigenvalue i

Fλ , i = 1,2,3 of the reduced 

field density operator as 
 

                          
3

i i
F F F

i 1

S (t) (t)ln (t)
=

= − λ λ∑  (26) 

where  

            i 21
F 1 2

y 2 2
y 3y cos( (i 1) )

3 3 3
λ = − + − η + − π  (27) 

and  

                  
( )

3
1 1 2 1 3

3 / 22
1 2

1 9 y y 2y 27y
cos

3 2 y 3y
−

 − − η =
 − 

 (28) 

with  

1y A A B B C C= − − −  

2

2 2 2

y A A B B B B C C C C A A

A B B C C A

= + +

− − −
 

 
2 2

3

2

y A A B C B B C A

C C A B A A B B C C

A B B C C A A C C B B A

= +

+ −

− −

 (29) 

 
 Now, we shall investigate numerically the dynamic 
of the field entropy in Fig. (6-10) with the same initial 
parameters of Fig. (1-5), respectively. In Fig. 6 
correspond to the field entropy in both the absence of 
the detuning and the Kerr-like medium. It is observed 
that the maximum and minimum values of the field 
entropy are achieved during the state time evolution. 
Also, we noticed that the field entropy evolves 
periodically and the oscillations increase whereas the 
amplitudes decrease as the scaled time increases. At 
one-half of the revival time the entropy attains its 
minimum. As soon as the value of the parameter δ 
increases more fluctuations occur. The influence of the 
detuning parameter in off-resonant case (∆1 = ∆2 = 10) 
on the field entropy in the absence of Kerr-medium can 
be seen in Fig. 7. It is observed that the first maximum 
value of the field entropy decreases, the period of 
revivals becomes longer and the time area of vibration 
of the entropy is compressed. In Fig. 8, we consider the 
nonresonant case ∆1 ≠ ∆2, we plot the entropy field S(t) 
with ∆1 = 5 and ∆2 = 3 in the absence of the Kerr-like 
medium. We noticed that the field entropy has 
minimum value and the collapse time of the entropy 
becomes longer as |∆1-∆2| increases. On the other hand, 
the amplitude of the oscillations decreases as |∆1-∆2| 
increases. Also, for δ = 0, 0.3, 0.6 and 0.9, the field 
entropy reduces its maximum value (this phenomenon 
is more pronounced when δ = 0). On the other hand, we 
observed that the situation is changed at δ ≠ 0, the 
fluctuations in the function are seen with interference 
between the patterns at the half period of the considered 
time. To visualize the effect of the Kerr-like medium in 
the absence of the detuning, we plot S(t) as shown in 
Fig. 9 for different values of the parameter δ and χ = 
0.3. The entropy function S(t) fluctuated and it is 
rapidly after half period of the considered time. Also, 
the Kerr-like medium implies to increase the minimum 
values of the field entropy. Moreover, we noticed that 
the Kerr-like medium increases the amplitudes of the 
field entropy is decrease. In the case of δ≠0, this 
phenomenon is more pronounced and occurs once at the 
onset of the interaction. The influence of the detunings 
on the field entropy in the presence of the Kerr medium 
(χ = 0.3)  is  visualized  in  Fig.  10. We noticed that the 
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Fig. 6: The same as in Fig. 1 but for the field entropy SF(t) 
 

          
 

           
 

Fig. 7: The same as in Fig. 2 but for the field entropy SF(t) 
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Fig. 8: The same as in Fig. 3 but for the field entropy SF(t)  

 

            

            
Fig. 9: The same as in Fig. 4 but for the field entropy SF(t) 
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Fig. 10: The same as in Fig. 5 but for the field entropy SF(t) 
 
Kerr-like medium leads to increase the maximum 
values of the field entropy. In this case, the field and the 
atom almost retain in strong entanglement.  
 

CONCLUSIONS 
 
 The system of a three-level atom with a momentum 
eigenstate interacting one-mode cavity field in the 
presence of a nonlinear Kerr-like medium is studied. 
The coupling parameter between the atom and the field 
is modulated to be time -dependent. Under certain 
approximation similar of the RWA with δ≈∆i, an exact 
solution is given. The momentum increment behaviors 
as well as the entropy field are investigated. The 
influence of the detuning parameters, the Kerr-like 
medium and the coupling parameter on the evolution of 
the momentum increment and the field entropy is 
analyzed. We conclude that there is no difference 
between the field entropy behavior in the usual stander 
three level atom model compared to the present case, 
except some delay in the time related to the collapses 
and revivals phenomena when δ≠0. 
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