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Abstract: Main parameters of evaluation of modern information protection systems that implement RSA
encryption algorithm are performance, RAM consumption and stability of algorithm of used method of modular
exponentiation to the attacks on implementation, particularly in the temporal analysis. Methods of modular
exponentiation (binary method, B method and sliding window method) are characterized by the dependence of
execution time of their algorithm on the key length and by the maximum number of used memory cells.
Comparative investigation of operations of binary method, f method and sliding window method of modular
exponentiation with "left-to-right" and "right-to-left"reading bits of exponent was conducted. Algorithm of
B method of modularexponentiation has high performance and reasonable consumption of RAM.
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INTRODUCTION

Traditionally it is accepted to estimate the degree
of complexity of algorithm in terms of consumed basic
computer resources, such as CPU time and RAM. In this
regard, such concepts as time and space complexity of the
algorithm are introduced [1, 3].

Time complexity parameter is  particularly
important for applications with interactive mode of
program or for real-time control tasks [2, 7]. It is necessary
to spend some time to perform the operations of modular
exponentiation algorithms (binary, B, sliding window
methods).

Execution time of single operation of the algorithm
depends on the speed of processor, so it can be said that
in general, every single step of the algorithm is performed
during certain time. Basic operations of modular
exponentiation algorithms and time spent on each of them
can be represented as Table 1:

In general, it can be assumed that ratio between the
values of these times is as follows:

On the basis of data in Table 1, we can construct a
mathematical model for calculating the time required to
perform each of the algorithms for the implementation of
methods of modular exponentiation.
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Table 1: Time required to perform basic operations of exponentiation algorithms

Operation Time, in ticks Meaning of the operation

a=b C Simple assignment

z=xmodm B Modulus assignment

FIND (max{n;..ng|i, j + 1< w, n=1) Q Finding the longest sequence of bits, so that

Ij+ I<wandn; =1

n = (n...ng), T Representation of numbers in binary notation
y=x.xmodm R Modulus squared

z=x.ymodm S Modular multiplication

z=yP mod m D Modular exponentiation

B-1 k-1 "right-to-left" reading:
T4(nw)=t+b+ Cy + d{i\ni:O}+S{i\n,-=l}+d{i\ni=1})
! w=l 0 T6(n.|wi|)=t+b+ 2 cj+et
+2c + 2 25y, = (5)
{ j=13,...,2M —1}
w=p-1

=t+(2w+l)c+b+M-d +[M—Wo(n)+2“”rl —2)-s
w w

Where wy(n) number of zero bits in the representationof
number n to the base Pobviously, that in binary image
numbers né€[logn]-H(n) of zero bits.

To convert number into [ notation, binary image is
divided into n windows with length of w Therefore, the
upper bound W,(n):

= | Lo

w

(6)

On the other hand, the lower bound can easily be
determined as:

Womin (n) _ \‘(ﬂogn—‘ —H(n)) ) W|

(w=1)-[logn | )

Following time is required to perform sliding window
method:

"left-to-right" reading:
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Where p is number of windows,

(jwo|+-.-+|wi]) Sum of all odd windows that equal to

Hamming weight, since these windows consist of only
single bits.

Obviously that p, Foﬂ—‘, @ P = {H (n)—‘ (10)
2 w,

i
Thus, in general, for the investigation of the

execution time of this algorithm following average value
can be used

H(n) {logn]
w; 2

2

an
p:

Determination of the most productive algorithm of
modular exponentiation:It is obvious that to improve
performance of asymmetric encryption devices it is
necessary to determine the most productive of known
algorithms of modular exponentiation that are used in
such devices. We consider solution of this problemon the
example of described above binary, B and sliding window
methods.
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As mentioned above, total execution time of the
algorithm of binary method is dependent only on the
length of binary image of number n. Execution time of the
algorithm of B method depends not only on the length of
the binary image of number n, but also on the value of
(i.e. on the number w). Execution time of the algorithm of
sliding window method depends on the length of the
binary image of number n and on the width of odd
window [6-9]. Taking this into account, it is possible to
investigate dependence of the execution time of the
algorithm on the length of binary image of number n.

RESULTS AND DISCUSSION

Shows this dependence for the averaged values of
the Hamming weight (H(n)) and number of zeros in
the B image of number n (W,(n)), as well as for different
values of w, the width of odd window and values of ¢=1
b=1.5, q=1.6, t=1.6, r=15, s=16, d=19 (the ratio
between the variables correspond to the number of ticks
that the processor spends to perform the corresponding
operations) [11].

In this case, T1(n) and T2(n) -T3(n2) and T3(n4)
execution time of "left-to-right" B algorithm of modular
exponentiation at w = 2 and w = 4, correspondingly.
T4(n2) and T4(n4) executiontimeof "right-to-left" B
algorithm of modular exponentiation at w =2 and w =4,
correspondingly. 75(n3) and T6(n3) executiontime of
"left-to-right" and '"right-to-left" method of sliding
window at the length of the window w, = 3.

Analysis of Fig. 1 shows that the execution time of
algorithms of modular exponentiation is linear. In addition,
the fastest algorithms are that of "left-to-right" and
"right-to-left" B method andthe most time consuming is
the algorithm of binary method.

Fig. 2 and Fig. 3 shows, respectively, the dependence
of speed of algorithms of "left-to-right" and "right-to-left"
B method on the value of power of w base at different key
length and at averaged value of the Hamming weight.

Using data from Fig.2 and Fig.3 we can determine the
optimum base at which there is the smallest delay in work
of algorithm, i.e. the minimum 73 and 74 , respectively and
thus provide maximum productivity for given values of
the exponent.For algorithms of B method values of w
presented in Table 2 will be the best.

Space complexity of the algorithm, i.e. consumption
of computer memory for its execution, becomes critical
when the volume of data to be processed is almost equal
to amount of RAM.In modern computers acuteness of
this problem is reduced due to increase in amount of
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Fig. 1: Evaluation of the performance characteristics of
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Fig. 3: Dependence of the speed of algorithm of "right-to-

left" B method on the value of the power of w base

random access memory (RAM) and to usage of multilevel
storage system. For programs that implement the
algorithm very large, almost unlimited, memory space
(virtual memory) is available. Lack of main memory only
leads to a slowdown through the exchange of data with
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Table 2: The optimum values of the power of bases of § method at different
length of n key.

w
"left-to-right" "right-to-left"

Length of n key B method B method
4096 8 7

2048 7 6

1024 6 5

512 6 5

256 5 4

Table 3: The maximum number of memory cells involved in the execution
of algorithms of modul are xponentiation

Modular exponentiation algorithm The number of memory cells

Binary 2
ﬁ 2w
Sliding window 2%

the disk. Special techniques are used to minimize the loss
of time in this exchange.It is the usage of cache memory
and hardware preview of program commands on the
required number of steps ahead that allows
totransferrequired values from disk to main memory in
advance [5, 11-14]. When performing considered modular
exponentiation algorithms maximum number of registers
according to Table 3 are busy in computer memory.

Analysis of Table 3 shows that the largest
consumption of memory is during the execution of sliding
window algorithm, since length of the largest window
can be equal to the half length of the key. In the case of B
modular exponentiation algorithm consumption of memory
depends on the chosen notation, i.e.on the value.

CONCLUSION

Parameters of time complexity and space complexity
were investigated. It was found that best methods for
application are f method and sliding window method of
modular exponentiation with "left-to-right" reading bits
of exponent.
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