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Abstract: In this paper, a model describing the interaction of a two-level atom with one-mode cavity field
including the gravitational field and the Stark-shift is discussed. The analytical solution for this model is
presented when the atom and the field are initially prepared in its excited state and coherent state, respectively.
The obtained results are employed to examine the dynamical behaviors of the atomic inversion and the field
entropy. We observed that increasing of the gravitational field parameter decreases the amplitudes of the
oscillations and increases the collapse time as well as the collapse period is elongated and the fluctuations
amplitudes decrease in the presence of the Stark shift.
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INTRODUCTION Recently, atomic beams with very low velocities are

The interaction between electromagnetic fields and interferometry [7]. It is obvious that for atoms moving
matter (atoms) lies at the heart of quantum optics. After with a velocity of few millimeters or centimeters per
more than three decades the Jaynes-Cummings model second for a time period of several milliseconds or more,
(JCM) [1] is still the best model to represent this concept. the influence of earth’s acceleration becomes important
This model is one of the exactly solvable models and cannot be neglected [8]. For this reason, it is interest
describing the interaction between a two-level atom and to study the temporal evolution of a moving atom
a single mode cavity field. Also, this model has been simultaneously exposed to the classical homogenous
realized experimentally [2]. It gives arise to many quantum gravitational field and a single-mode traveling wave field.
phenomena that cannot be explained in classical terms, Since any quantum optical experiment in the laboratory is
such as the collapses and revivals of the atomic actually made in a non-inertial frame, it is important to
population inversion [3] and squeezing of the field [4]. estimate the influence of earth’s acceleration on the
Recent experiments with Rydberg atoms and microwave outcome of the experiment. Recently, a semiclassical
photons in a superconducting cavity have turned the description of a two-level atom interacting with a running
JCM from a theoretical curiosity to a useful and testable laser wave in a gravitational field is investigated [9,10].
enterprise [5]. Furthermore, the quantum property of a Furthermore, a complementary scheme based on an SU(2)
system containing an atom interacting with an optical field dynamical algebraic structures to investigate the influence
in a cavity is one of the main contents of quantum optics. of the gravity on the quantum-nondemolition (QND)
Especially the time evolution of the field (or atomic) measurement of atomic momentum in the dispersive JCM
entropy  is  attracting many researchers due to its is demonstrated [11].
potential applications in the field of quantum information. In this paper, we study a model describing the
Phoenix and Knight [6] have shown that entropy is a interaction of a two-level atom with one-mode cavity field
useful operational measure of the purity of a quantum including the classical homogenous gravitational field and
state. the Stark-shift. the  dynamical  behaviors  of  the  atomic

generated experimentally in laser cooling and atomic
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inversion and  the  field  entropy  is   investigated. The eliminating m-1 intermediate non-resonantly coupled level
paper is organized as follows: in Section 2 we give a
description of the system and formulas. Section 3 is
devoted to the discussion of the evolution of the atomic
inversion. In Section 4, we investigate the field entropy.
Some conclusions are presented in Section 5. 

Description of the Model: The model we consider here
describes the non-resonant and multi-photons case of a
two-level atom interacting with a single mode cavity field.
The considered model includes the classical homogenous
gravitational field and the Stark-shift terms. The total
Hamiltonian of the system under consideration and in the
RWA can be written as ( ):

(1)

where  ( ) is the free (interaction) part of
Hamiltonian. The free part  is defined as:

(2)

where  is the momentum operator, M is the mass of
atom,  is the earth's gravitational acceleration,  is the
position vector in  is the energy of level ,

,  are the lowering and raising operators
between levels i and j wheni j and are the population
operators for i = j and  is the annihilation (creation)

operator of the field of frequency . The interaction part
in (1) is defined as: 

(3)

A Stark shift is caused by the intermediate level 
and the correspondingparameter  and  are ,1 2

and  where  and  are the coupling strengths1 2

of the intermediate level with the lower and upper levels
of the two-level atom, respectively,  is the usual coupling
constant between the field and the atom,  is the
propagation vector. We would like to point out that: to
produce the Stark-shift, one has to make the adiabatic
elimination of the third virtual energy level which in fact
can be achieved for m  2 where m is the multiplicity for
the photon. 

It is important to mention that the stander JCM is
given when one puts   and  m  = 1.
Also,  the  effective  two-level m-photon Hamiltonian by

is obtained where . Moreover, the model [3] is
given when the earth gravitational acceleration is not
taken into account. 

In what follows, we shall present some interesting
properties of the atom (field) operators of the considered
model. The operators  are the generators of the unitary
group satisfying the following commutation relations: 

(4)

where  is the Kroneker symbol and .ij

Also, the operators  and  satisfy the canonical
commutation relation  while . In

the general form it is easy to show that: 

(5)

Moreover, the field operators satisfy the following
relations:

(6)

As shown previously, the gravitational influence of
atoms in an interferometer and in a running laser wave can
not be neglected [9,10]. Also, we consider that the atom
moving in the Earth’s gravitational field is equivalent to a
free atom moving in a uniformly accelerated reference
frame. Under these conditions we have: 

(7)

Now, we turn our attention to find the wave function
of the system under consideration.

The Wave Function: Here, we consider that at time t > 0
the atom is in the excited state  and the cavity mode
prepared in the coherent state

(8)

where q  describes the amplitude of the state   whichn

is defined as  and  is the initial

mean photon number. 
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Also, assuming that at time t = 0 the field and the
atom are decoupled, the initial state vector of system can
be written as: (14)

(9) where

Moreover, let  be the eigen-function for the
operator  with an eigen value ,  for  with n
and  for j  atomic state, where .th

According to these assumption the coupled atom-field
wave function of the system at an arbitrary time t can be
expressed as :

(10)

With

(11)

where the expressions A(t) and B(t) are the probability
amplitudes  which  determine  the  initial  state .
Using the time-dependent Schrödinger equation

 and the actions of the atomic and field
operators on the wave function  we have the
following system of ordinary differential equations for the
probability amplitudes: 

(12)

with

(13)

Now, let us first start with the solution of (12) in the
off-resonance case, when the Stark-shift is taken into
account and the classical homogenous gravitational field,
is absent. The probability amplitudes A(t) and B(t) are
given as: 

(15)

Furthermore, the probability amplitudes in the
resonant case, in the absence of the Stark-shift and the
classical homogenous gravitational field is taken in to
account are given by: 

(16)
where

(17)

where , H and  are the confluent hypergeometric,
Hermite and Gamma functions, respectively. 

Moreover, when both Stark-shift and the classical
homogenous gravitational field are taken into account, the
probability amplitudes are given by: 

(17)

Where

(18)
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With Also, we plot in Fig. 2 the atomic inversion in the

(19)

The detuning parameter (t) depends on the recoil
energy , the classical homogenous gravitational
field parameter  and the Doppler shift .
Getting the explicit form of the wave function  for the
system under consideration, therefore we are in a position
to discuss any phenomena related to this system. In the
following subsections, we shall employ the obtained
results to discuss the effect of the Stark shift and the
classical homogenous gravitational field on the time
evolution of both the atomic inversion and the field
entropy.

The Atomic Population Inversion: The atomic population
inversion of the atom is one of the important atomic
dynamical variables of the atomic systems. It usually
gives us information about the behavior of the atom
during the interaction period. The atomic inversion is
defined as the difference between the probability of
finding the atom in the excited state and in the ground
state. From the wave function (10), we can evaluate the
time evolution of the atomic inversion as follows:

(20)

Since the resulting series cannot be analytically
summed in a closed form, we will evaluate them
numerically. To discuss the atomic inversion, we have
plotted several figures versus the scaled time t for
different values of the given parameters. 

For example in Figs. (1a-1d), we consider the case in
which the values of the parameter , 0.3, 0.6 and 0.9
taking into account fixed values for other parameters. We
set the detuning parameter  = 0, the mean photon
number , the  Stark  shift  parameters  and
m = 1. In this case, we notice that for longer time the
atomic inversion shows small oscillations around zero.
Also, Fig. (1a) shows that the atomic inversion evolves
periodically and the oscillations increase whereas the
amplitudes decrease as the scaled time increases. In the
presence of classical homogenous gravitational field
parameter , we can see in Figs. (1b-1d) the amplitude
of the fluctuations in this case is less than the absence
gravitational field case, however the revival period is
elongated. Also, we notice that increasing of the
gravitational field parameter decreases the amplitudes of
the oscillations and increases the collapse time.

absence of the Stark-shift parameters  taking
into consideration the same values of the other
parameters except  = 5. In Fig. 2a, we can see that the
function is shifted upward and fluctuates around 0.1 for
the case . On the other hand Figs. (2b-2d), show
that the function is shifted downwards by increasing the
gravitational field. This is due to the modification in the
detuning  parameter  which  affected  by  the time where

 = (t). Thus, we can say that, the effect of the gravity
parameter leads to stronger interaction between the atom
and the field where the atomic system in this case would
store more energy. 

In order to examine the effect of the Stark shift into
consideration  we  have  to  consider  2-photon  process,
m = 2. For instance in Fig. (3), we put  = 0.5,  = 2 and1 2

 = 0. We observed that the period of revivals becomes
smaller, since for longer time, the atomic inversion shows
small periodic oscillations around positive values.
Furthermore, it is obvious that the atomic inversion shows
rapid oscillations around 0.6 and it oscillates around the
positive value which means that this deformation exceeds
the energy stored in the atomic subsystem. On the other
hand, when  0.6 and 0.9, the function is shifted to
higher values while the fluctuations amplitude increased.
However, there is slight elongation in the period of
collapses between revivals compared to the standard
JCM. This means that the Stark-shift has strongly affects
on the system behavior. Also, we can see a decrease in
the fluctuations amplitudes as shown in Figs. (3a-3d). 

In Figs.  (4a-4d),  we  put  the  Stark shift parameters
=  = 1, one observes that the atomic inversion shows1 2

small oscillations around zero for all values of .
Moreover, the collapse period is elongated and the
fluctuations  amplitudes  decrease as seen from this
figure.

Finally, when the detuning parameter is taken place
in the interaction  = 5, we notice that the function
changes its behavior just for the cases . It is
obvious that the function is shifted just above zero, the
collapse period is elongated and the fluctuations
amplitudes are decreased. Also, It is shown that as
gravitational field parameter increases the collapse is
increasing and the oscillations go back around zero again
as shown in Figs. (5a-5d). Thus we may conclude that the
effect of the classical homogonous gravitational field on
the atomic inversion is strong enough to make essential
changes in its behavior and it is pronounced in most
cases. In the next section we are going to discuss the
entanglement degree due to the quantum field entropy for
the system under consideration.
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Fig. 1: The time evolution of the atomic inversion W(t) against the scaled time t with  = 0, m =1, ,  and
different values of parameter  (a)  (b)  ©  and (d) .

Fig. 2: The same as in Fig. 1 but for  = 5.
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Fig. 3: The same as in Fig. 1 but for m = 2,  = 0.5 and  = 0.5 . 1 2

Fig. 4: The same as in Fig. (1) but for m = 2,  =  = 0.5.1 2

The  Entropy  of  the  Cavity  Field: The     entanglement measure of the purity of the quantum state. The time
is    an   important   parameter   in   quantum     optics, evolution  of  the  field  entropy  reflects the time
where  it  is  the  corner-stone  of  the  quantum evolution of the degree of entanglement between the atom
information theory. In fact, much attention has been and the field. Thus, the field entropy is used as a
focused  on  the  properties  of  the  entanglement measurement of the entanglement degree for atomic
between field and atom, in particular the entropy of the system. Quantum mechanically, the field entropy is
system. The entropy is a  very  useful  operational defined by:



{ }ln ,S Tr= −

.A F A FS S S S S− ≤ ≤ +

( )( ) ( ) ( ) ( )ln .A F A F A F A FS Tr=

{ }(t) ( ) ( ) ,f atom
A A A B

Tr t t
B A B B

 
= =    

0 0
( ) , ( ) ,n n

n n
A q A t n B q B t n m

∞ ∞

= =
= = +∑ ∑

( )tf
±

( ) ln ( ) ( ) ln ( ) ,f f f f fS t t t t+ + − − = − + 

( )tf
±

(t)f

exp( ) ,

exp( ) ,
f A A A B

B B A B

± = ± ±

=  

( )1 1sinh .
2

A A B B
A B

−  
= −   

Middle-East J. Sci. Res., 22 (7): 1003-1013, 2014

1009

Fig. 5: The same as in Fig. (1) but for  = 5.

(21) (24)

where  is the density operator for a given quantum
system with Boltzmann’s constant equal to 1. Consider where
the field and the atom interacts with each other. Quantum
entropies are generally difficult to compute, because they (25)
involve the digitalization of large (and, in many cases,
infinite dimensional) density matrices. If  describes a
pure state, then S = 0 and if  describes a mixed state, then We can go to a basis in which the density matrix of
S  0. Let S  and S  denote the entropies of two the field is diagonal and we can express the field entropyA F

interacting systems and let S denotes the entropy of the in terms of the eigenvalues  of the reduced field
composite system. Araki and Lieb showed that the
entropy satisfies the triangle inequalities:

(22)

A nice illustration of these inequalities in the context
of the JCM has been given (Knight and Phoenix, 1991).
The entropies of the atom and the field, when treated as
separated systems, are defined through the
corresponding reduced density operators as:

(23)

If we assume that the system starts from a pure state,
then S = 0 and if describes a mixed state, then S  0. The
density operator for a given quantum system can be
written in the form:

density operator, as follows:

(26)

where  is an eigenvalue of the density operator

. Then, the eigenvalues and the eigenstates of the
density matrix of the field are given by:

(27)

where

(28)
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Fig. 6: The same as in Fig. 1 but for the field entropy S (t).f

where ,  and  can be calculated from  the fluctuations of the entropy and its period

(25). Now, we turn to examine the temporal evolutions of
the entropy field related to the present model. This will be
done on the basis of the analytical solution obtained in
the previous section. For this reason, we plot several
figures to display the behavior of the field entropy against
the scaled time for different values of the given
parameters. For example in Fig. 6 we set the same data as
in Fig. 1. Also, the value of the initial mean photon
number to be . We notice that the maximum value of
the entropy is approximately 0.7 and this value is affected
by the gravity-parameter. Furthermore, it is observable
that, the first maximum of the field entropy at t > 0 is
achieved in the collapse time, while at one-half of the
revival time the entropy reaches its local minimum. Also,
the entropy shows fluctuations after a certain period of
time. As the gravity-parameter increases value of
maximum is decreased as shown in Figs. (6b-6d), in
addition fluctuations start after a longer period time by
comparison with the case  = 0 as in Fig. 6a. Also, we
observe that the time delaying more fluctuations with
increasing of the parameter .

In Fig. 7, we investigate the effect of the detuning
parameter where we put  = 5 with different values of the
gravity-parameter on the field entropy. We see that the
entropy affected by the gravity-parameter where the
maximum value of the entropy is approximately 0.4. Also
the entropy reaches its local minimum compared with the
case of absence the detuning Fig. 6a. However, when

time decrease; but when  the fluctuations occur
for a short time and its period time also decrease as shown
in Fig. 7d. 

To examine the effect of the Stark shift, we consider
the case in which  = 5, m = 2,  = 0.5 and  = 2. In this1 2

case a drastic change occurs in the entropy function
behavior, while for the case  an increase in the
fluctuations number and consequently more period of
squeezing at different intervals is observed. Also, the
value of the maximum field entropy obviously decreases
(Fig. 8a). On the other hand, when the gravity-parameter
takes into account, the values of the field entropy
decreases and the fluctuations increase as shown in Figs.
(8a-8d).

In Fig. 9, we plot the entropy when the same values
in Fig. 8 are taken with . In this case, we can see
different behavior from the previous  case   =  0.5  and1

 = 2.. It is remarkable that the field entropy evolves1

periodically and shows of the disentangled between the
field and the atom. Furthermore, we notice that the
amplitude is decreasing by increasing the time and the
gravity parameter.

Finally,   when  the  detuning  parameter takes place
 = 5, while all other parameters have the same values as

the previous case. The minimum value of the entropy
function is reduced and the behavior is similar to the
previous case except there is more interference between
the fluctuations pattern as shown in Fig. 10.
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Fig. 7: The same as in Fig. 2 but for the field entropy S (t).f

Fig. 8: The same as in Fig. 3 but for the field entropy S (t).f
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Fig. 9: The same as in Fig. 4 but for the field entropy S (t).f

Fig. 10: The same as in Fig. 5 but for the field entropy S (t).f
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