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Abstract: In this paper an attempt is made to study two factors in the same experimental design with interaction
term included in the model. By interaction, we simply mean the failure of levels of factor A to behave
consistently across levels of factor B and vice versa (Ochei et al, 2012). The general model for a two-factor with
interaction given by y =µ+ + +( ) + , i=1,2,…,p; j=1,2,…,q; k=1,2,…,r.  Where,  denotes the effect ofilk i j ij ijk I

the i  level of factor A,  is the effect of the j  level of factor B, ( )  denotes the interaction between the ith th th
j ij

level of factor A and the j  level of factor B and  is the error term associated with y , was employed. Thenth
ijk ikj

the following testable hypotheses against theiralternatives were tested for significance.

H : ( )  = 0 (No interaction)00 ij

H : = =…=  (No differences among the effect of levels of factor A)01 1 2 p

H : = =….=  (No differences among the effects of levels of factor B)20 1 2 q

In testing these hypotheses, a design with two levels of each factor and five observations per treatment
combination was considered. The results obtained in this case was extended to the general settings in which
there were p levels of factor A, q levels of factor B and r observations per treatment combination.

Key words: Design    Interaction   Two-factor   Hypothesis   Non-estimability  Levels   Effects
  Treatment  combination  Non-testability   ANOVA    Test   statistic   Generalization
 Reparameterization

INTRODUCTION ANOVA. Various researchers vary in their

Up to this time one factor problems have been ANOVA procedure after encountering an interaction. A
emphasized. Many times in practice the researcher want significant interaction will often mask the significance of
to study the effects of two factors in the same experiment. main effects [2]. In this work all these challenges are
For instance, a chemist might want to study the effect of tackled accordingly. However, a lengthy discussion of
both pressure and temperature on the viscosity of an interactions is available in Dallas and Franklin [3], Freund
adhesive; an engineer might study the effect of engine [4], Hubert [5], Cox [6], Stapleton [7], Anderson and Braak
speed and oil typeon the life span of a piston ring; a [8], Eze and Ehiwario [9].
medical researcher might study the effect of an exercise
regimen and diet on blood sugar levels in diabetes. The Hypothesis: The null hypotheses to be tested shall
Several designs can be used to accomplish this [1]. One be of the form
of the general designs suitable for this kind of experiment
is the two-factor balanced design with interaction. H : ( ) =0 (No interaction)

In a two-factor design with interaction, two factors H : = =…=  (No differences among the effects of
are studied in the same experiment and an interaction term levels of factor A)
is included in the model. The ability to detect interactions H : = =…=  (No difference among the effects of
in an experiment is a major advantage of multiple factor levels of factor B)

recommendations regarding the continuation of the

00 ij

10 1 2 I

20 1 2 j
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In this design we first test for the presence of
interaction. Subsequent hypothesis-testing strategy
depends on the outcome of this initial test. Factor A 1 y  y y  y

The Two-factor Interaction Model: The general model for
a two-factor design with interaction is

y =µ+ + +( ) + , i=1,2,…,p; j=1,2,…,q; k=1,2,…,rijk i j ij ijk

(1.1)

where,  denotes the effect of the i  level of factor A, i j
th

denotes the effect of the j  level of factor B, ( )  denotesth
ij

the interaction between the i  level of factor A and the jth th

level of factor B and  is the error term associated withijk

y .ikj

Developing the Appropriate Test Statistic: In seeing how
to test our hypotheses in section 1.1, we consider in detail
a design with two levels of each factor and two
observations per treatment combination to formulate the
appropriate test statistic. The result obtained in this
specific case are extended easily to the general setting in
which there are p levels of factor A, q levels of factor B
and r observations per treatment combination.

The data layout for the 2x2 experimental design is
given in Table 1.1

In matrix form, the model is

Y=X + (1.2)

where,

(1.3)

 =  (1.4), y =  (1.5) and  =  (1.6)

The matrix X, is of order 8x9. To determine its rank, we
let C  denote the i  column of X. Bear in mind that eachi

th

column of X can be expressed as a linear combination of
column 6 (C ),  through  column  9  (C ),  the  columns  that6 9

Table 1.1: Data layout for a two-factor design with p=q=r=2

1 2

111 112 211 212

2 y  y y  y121 122 221 222

code the interaction terms and that these columns are
linearly independent as demonstrated by Myers & Milton,
(1991). Hence the rank of X is four, which proves that the
matrix is less than full rank.

Test for Interaction: Our next assignment is to develop a
test statistic for detecting the presence of interaction. It is
risky to assume that if no interaction exists, then each of
the interaction effects ( ) , is zero and that at least oneij

of these is non-zero otherwise. The trouble arises from the
fact that the interaction effects are not estimable. Hence
the hypothesis

H : C  = 0 (1.7)0

where

c = (1.8)

is not testable. It can be proved by showing that CQ C
given that Q = (X X) X X where Q isc

Q = (1.9)

and (X X)  is the conditional inverse of X X. One of thec

ways of overcoming this challenge of non-estimability of
the interaction effect and the non-testability of the
hypothesis of equation (1.7)is by reparameterization. It is
easy to verify by substitution that the definition of no
interaction can be rephrased in terms of the original model
parameters. In particular, no interaction exists if and only
if

[( ) -( ) ]-[( ) -( ) ] = 0 (1.10)ij ij i j i j

for all i, i , j and j . In general, this criterion generates pq(p-
1)(q-1) equations of which all but (p-1)(q-1) are redundant.
From this it can be seen that to test for no interaction
based on the original model parameters, we test a null
hypothesis of the form



( ) ( ) ( )
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H : C  =0 (1.11)0
*

where  C   is    an   appropriately    chosen   matrix  of
ones   and    zeros    of    dimension  (p-1)(q-1)
x(p+q+pq+1).

In a two-factor design with p=q=r=2, the null
hypothesis of no interaction is expressed as 

H : [( ) -( ) ]-[( ) -( ) ] = 0 (1.12)0 11 12 21 22

In   matrix  form,   this   null   hypothesis   of  (1.11)
becomes

H : C  = 0 (1.13)0
*

where

C = (1.14)

and

= (1.15)

It can be proved that the null hypothesis of equation
(1.13) is testable by showing that CQ = C where Q = (X X)c

X X.
As the number of levels of factor A and B increases,

the system of equations needed to express the notion of
no interaction becomes more complex (Myers &Milton,
1991). As a result of this, it is convenient to reparameterize
the model in such a way that interaction can be expressed
more simply by means of the new parameters. Specifically,
we want reparameterize in such a way that the
reparameterized “interaction” terms will be estimable. By
so doing, interaction can be tested by considering the
numerical values of these terms directly. The guide to the
general technique can be provided [10].

Considering the two-factor model of equation (1.1)

y =µ+ + +( ) + , i=1,2,…,p; j=1,2,…,q; k=1,2,…,r and u =µ+ + +( ) (1.16)ijk i j ij ijk ij i j ij

We define , , , .., . and .  byi j

(1.17)

The model can be expressed via these parameters as

(1.18)

which can be written as

y  =µ + + +( ) + (1.19)ijk i j ij ijk
* * * * *

where,
It can be shown by mathematical induction that each of these new parameters is estimable. Hence it is reasonable

to expect that the null hypothesis of no interaction can be expressed simply in terms of these redefined parameters.
Specifically, it can be shown that no interaction exists if and only if ( ) =0 for each iand j [11].ij

*

It is pertinent to mention that by defining ,  and ( )  as has been done, certain restrictions have been inducedi j ij
* * *

which states that:

(1.20)
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These constraints make it easy to solve the normal equations for the reparameterized model.The design matrix for
the general two-factor model is a matrix of ones and zeros which are generalization of equations (1.3), (1.4), (1.5) and (1.6)
given respectively by

(1.21)

As usual, it is assumed that  is a normally distributed random vector with mean 0 and variance  So, the2
I.

vectors,X X which is an (p+q+1)x(p+q+1) matrix of rank (p+q-1) used to establish the estimability of contrasts in the ’s;
X Y; and C which is the (p-1)x(p+q+1) matrix forming a testable hypothesis of (1.13), are respectively given by [12]:

(1.22)

where

(1.23)

The normal equations are given by

(X X)b = X Y (1.24)
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Then the estimators for µ , ,  and ( ) are* * * *
i j ij

(1.25)

The regression sum of squares for the reparameterized full rank model is thus given by

SS = b X Y (1.26)Reg (Full) 
*

where, b = [ ]. In the reduced model, it is assumed that there is no interaction. The regression sum of squares*

for this model is given by

SS = (1.27)Reg (Reduced) 

By subtraction, SS  = SS  – SS  = (1.28)Reg (Hypothesis) Reg (Full) Reg (Reduced)

The degrees of freedom associated with these sums of squares are pq, p+q-1 and (p-1)(q-1) respectively. The F-ratio
used to test H  is0

F  = (1.29)(p-1)(q-1), pqr-pq

The ANOVAfor interaction test is summarized in Table 1.2

Tests for Main Effects and Interaction: To test for interaction only we test the hypothesis 

H : ( ) = 0 (1.30)0 ij
*

If interaction is detected in a two-factor design, it is suggested that factors be compared row by row or column by
column using one-way classification procedure[10].The ANOVA Table for this procedure is summarized in Table 1.3 

Application of the Procedure
Illustrative Example:A study of the solubility of two solutes in two different solvents is conducted. The study is aimed
at testing the effect of the two solvents on the time required for the solutes to dissolve. The experiment is repeated for
five consecutive times resulting in five observations for each treatment combinations. This was done to detect possible
presence of interaction between the two factors. The data obtained is displayedin Table 1.4.

From the data using the procedural formulae, we have that;

The estimates of the parameters ( )  are as follows:ij
*
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Table 1.2: ANOVA Table used to Test for Interaction in a Two Factor design
Sources of variation Degrees of freedom Sum of squares Mean square F-ratio
Regression pq SS MSReg (Full) Reg (Full)

Reduced model p+q-1 SS MS F = Reg (Reduced) Reg (Reduced)

Hypothesis (p-1)(q-1) SS MSReg (Hypothesis) Reg (Hypothesis)

Residual pqr-pq SS MSRes Res

Total Pqr SSTotal

Table 1.3: ANOVA Table for the General Two-factor Design with Interaction
Sources of variation Degrees of freedom Sum of squares Mean square F-ratio

Regression (Full) pq

Mean 1 SS /(p-1) MS /MSFactor A Factor A Res

Factor A p-1 SS  /(q-1) MS /MSFactor B Factor B Res

Factor B q-1 SS /(p-1) (q-1) MS /MSInteraction Interaction Res

Interaction (p-1)(q-1) SS -SS -SS -SS SS  /(pqr-pq)Reg(Full) Mean FactorA Factor B Res

Residual pqr-pq SS –SSTotal Reg(Full)

Total (Uncorrected)  pqr

Table 1.4: Data for the Repeated Solubility Experiment of Two Solutes in Two Solvents
 Solvent (Factor I)
------------------------------------------------------------------------------------
Water Kerosene

Solute  (Factor II) Chalk 39 49 63 45 50 31 36 38 33 42
Laterite 47 39 41 43 36 44 47 42 41 45

Table 1.5: ANOVA Test for Interaction in the Two-Factor Design
Sources of variation Degrees of freedom Sum of squares Mean square F-ratio
Regression 4 36,662.6
Reduced model 3 36,350.55 312.05 F=  =10.44

Hypothesis 1 312.05 29.9
Residual 16 478.4
Total (Uncorrected) 20 37,141

Table 1.6: One-Way ANOVA for Comparing Solutes in Water
Sources of variation Degrees of freedom Sum of squares Mean square F-ratio
Regression 2 20,590.4

Reduced model 1 20,430.4 160.0 F=  = 3.35

Hypothesis 1 160.0 47.7
Residual 8 381.6
Total (Uncorrected)  10 20,972.0

Since the estimates are all far from zero, the data suggest the presence of interaction between factor I and factor II.
To further analytically test for the significant presence or otherwise of the interaction effect, we test our hypothesis of
(1.30). The row, column and cell totals of our illustrative data are thus:

y .=246, y .=206, y .=180, y .=219, y ..=452, y ..=399, y .=426, y. .=425.11 12 21 22 1 2 21 2
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Hence,

SS   =   =  37,141;SS = =   36,662.6;   SS  =Total(Uncorrected) Reg(Full) Reg(Reduced)

= 36,350.55.

The ANOVA test is summarized in Table 1.5.

Remark: Since F (10.44)>F (4.49) with p<0.01 we therefore reject the null hypothesis of no interaction. This agreesCal 1,16

with our initial results from our estimates that there is interaction between the two factors.
Based on the suggestion by scholars that if interaction is detected in a two-factor design, thenthe factors will be

compared row by row or column by column using the one-way classification procedure discussed in Section (1.5). This
test would be to see if there is a difference in the average time required for the two solutes to dissolve in water. We have
that;

SS  =  = 20,972, y .=246, y .=206, y ..=452,  = 20,590.4Total 11 12 1

The One-way ANOVA test for the main effects when interaction is detected is summarized in Table 1.6

Remark: Since F (3.35)<F  (3.46), p>0.1, we would accept that there is no difference in the average time required forCal 1.8

these two solutes to dissolve in water.

CONCLUSION 5. Hubert, M.B., 1979. Social statistics.2nd edition.

In the study the researcher has successfully carried 6. Cox, D.R., 1992. Planning experiments, John Wiley
out the analysis of a two-way balanced design in the face and Sons Inc., New York. 
of significant interaction between the factors. Specific 7.  Stapleton, J.H., 1995. Linear statistical models, John
methodology of transforming a non-estimable parameter Wiley and Sons, Inc., 605 Third Avenue, New York.
and a non-testable hypothesis with a less than full rank 8. Anderson, M.J. and C.J.F. Ter Braak, 2003.
model into estimable and testable full rank model by Permutation tests for multi-factorial analysis of
reparameterization was employed. variance, Journal of Statistical Computation and

REFERENCES 9. Eze, F.C. and J.C. Ehiwario, 2009.Common f-test

1.  Myers, R.H. and J.S. Milton, 1991. A First Course in design,  Natural   and   Applied   Sciences  Journal,
the Theory of Linear Statistical Models, PWS-KENT 10: 128-137.
Publishing Company, 20 Park Plaza, Boston, 10. Milton, J.S and J. Arnold, 1990. Introduction to
Massachusetts. Probability and Statistics: Principles and

2. Montgomery, D.C., 2001. Design and analysis of Applications for Engineering and the Computing
experiments, 5th ed., John Wiley & Sons, Inc., New Sciences. New York: McGraw-Hill.
York. 11. Ochei, L.S, F.C. Eze and B.F. Ajibade, 2012. Analysis

3. Dallas, E.J. and A.G. Franklin, 1972. Estimation of of Unbalanced Fixed-Effect Non-Interactive Model:
variance in a two-way classification with interaction. An intra-Factor Approach.Journal of the Nigerian
Journal of the American Statistical Association, Association of Mathematical Physics, 22: 199-206.
67(338): 557-560. 12. Freund, J.E., 1974. Modern elementary statistics. 4th

4. Fruend, J.E., 1971. Mathematical Statistics. Second Edition. Prentice Hall Inc., London.
Edition. PRENTICE-HALL, INC, Englewood Cliffs,
New Jersey.

McGraw-Hill, Inc., Washington.

Simulation, 73(2): 85-113. 

denominator for two-way interactive balanced


