Middle-East Journal of Scientific Research 21 (11): 2064-2071, 2014 ISSN 1990-9233 © IDOSI Publications, 2014 DOI: 10.5829/idosi.mejsr.2014.21.11.21795

Low Complexity Multiplier for GF (2^m) Based All One Polynomial

M. Anto Bennet, M. Manimaraboopathy, P. Maragathavalli and T.R. Dinesh Kumar

Department of ECE, VELTECH, Chennai-600062, India

Abstract: The area-time-efficient systolic structure for multiplication over GF (2m) based on irreducible all-one polynomial (AOP) and used a novel cut-set retiming to reduce the duration of the critical-path to one XOR gate delay. Basically, this paper is depends on digital electronics(ie.,logic gates)how to reduce the gate count.Finally it is used for what are techniques available in electronics(VLSI advanced technology).Here going to do is to reduce the power consumption,reduce the gate count,and to reduce the critical path in XOR gate in real time application.In input using the technique called register sharing an cut set retiming in that how to reduce the components and to get in area time efficient of systolic structure. The result obtained is in real time application of security purposes for example ATM,etc., to get the area time efficient systolic structure and security purposes in advanced VLSI technology. The application of the paper is mainly for security purposes and for irreducible polynomial of efficient implementation.

Key words: All-One Polynomial • Elliptic Curve Cryptography • System on Chip

INTRODUCTION

Finite Field Multipliers over GF (2^m) have wide applications in Elliptic Curve Cryptography (ECC) and Error Control Coding systems. Polynomial basis multipliers are popularly used because they are relatively simple to design and offer scalability for the fields of higher orders. Efficient hardware design for polynomialbased multiplication is therefore important for real-time applications. All-One Polynomial (AOP) is consists of binary number 0's and 1's considered suitable for systolic multipliers. The circuit complexitycan be reduced by using irreducible algorithm in each stage the number of gates are used that can be reduced at last obtained an single gate. Thereby, To achieve high throughput based on application. Thus the overall circuit complexity is reduced. All-one polynomial (AOP) is one of the classes ofpolynomials considered suitable to be used as irreducible polynomial for efficient implementation of finite field multiplication. Finite Field Multipliers over GF (2^m) have wide applications in Elliptic Curve Cryptography (ECC) and Error Control Coding systems. Polynomial basis multipliers are popularly used because they are relatively simple to design and offer scalability for the fields of higher orders. Efficient hardware design for polynomial-based multiplication is therefore important for real-time applications. The design of systolic arrays is the

mapping of the algorithm to the processor array. However, not all algorithms can be systolized. Only highly regular algorithms with the structure of nested loops are suitable for systolic implementation. Systolic implementation of multiplication over $GF(2^m)$ is usually very efficient in area-time complexity, but its latency is usually very large. Thus, two low latency systolic multipliers over $GF(2^m)$ based on general irreducible polynomials and irreducible pentanomials. Systolic arrays have been designed for a wide variety of computationally intensive problems in signal processing. numerical problems, pattern recognition, database and dictionary machines, graph algorithms. Finite Field Multipliers have wide applications in Elliptic Curve Cryptography (ECC) and Error Control Coding systems. Polynomial basis multipliers are popularly used because they are relatively simple to design and offer scalability for the fields of higher orders. Efficient hardware design for polynomial-based multiplication is therefore important for real-time applications.

Literature Survey: BerkSunar (2004) had proposed a multiplier in convolution algorithm. This algorithm technique is to reduce the delay logarithmic in bit length. The advantages are reducing the complexities and area efficiency is high. The disadvantages is space complexity is high [1].Hanho Lee (2003) had proposed an architecture

called high speed Reed-Solomon(RS) decoder architecture using modified algorithm for fiber optic rates. This decoder implements 0.13m CMOS standard technology. The advantage is high speed data processing and detection and correction of errors. The disadvantage is critical path is high at a clock frequency [2].NeethuJohny and Binoy Joseph(2013) had proposed an finite field multipliers over GF (2^m) used in technology like Elliptical Curve Cryptography(ECC) and Error Coding techniques. The advantage is to reduce the critical path in pipelining digital circuits and to reduce the time delay. The disadvantage is area efficient is little bit high [3]. ChiouYng Lee et al (2005) had proposed an Booth's algorithm using low complexity in dual basis multipliers. It saves about 9% space complexity. The advantage is parallel reduction of both space and time complexities. The disadvantage is multi bit processing is low in this process [4].Jean Claude et al (2010) had proposed an binary field multiplication representation in double polynomial system. It approach Fourier transform to perform reduction. The advantage is to avoid a multiplication required in Montgomery algorithm and in efficient method. The disadvantage is high complexity in this multiplier [5]. Henriquez (2003) had proposed an Galois field GF(2m) generated advantage in a space and time complexities. To reduce the multiplication by using irreducible polynomial in coding techniques. The advantage is to reduce the delay and complexities. The disadvantage is parallel multipliers in multilevel bit is less complexity [6]. YadollahEslami et al (2006) had proposed an Cryptography for secure purposes in electronic devices. It occupies small area; consume low power in this algorithm. The advantage is power consumption and less area delay. The disadvantage is multi bit of storage is less [7]. H.W. Leong et al (2002) had proposed a micro coded elliptic curve processor in FPGA technology. Using this technology to reduce the chip's i/o requirements. The advantage is control part of processor is micro coded in FPGA processor. The disadvantage is power consumption is high and cost is high [8].CancioMonterio et al (2013) had proposed a bit parallel multiplier over Galois field arithmetic algorithm in the circuit architecture. It implements the secure and low power dual logic circuit in bit parallel multiplier. The advantage is using CMOs technology to reduce the power consumption. The disadvantage is better security in high frequency rate [9]. Bimal Kumar Meher (2009) had proposed an finite field in efficient design of elliptic curve cryptography and error coding techniques for digital communication The advantage is security purposes and

cost effective is low. The disadvantage is less efficient during communication in elliptic curve cryptography [10]. Ashutosh Kumar Singh *et al* (2009) had proposed an error tolerant hardware efficient in very large scale integration architecture for bit parallel systolic multiplication. The advantage is operate in both dual base and polynomial base in efficient manner. The disadvantage is cost is high effective and space complexity is high [11]. Kazutoshi Wakabayashi *et al* (2000) had proposed an System on Chip (SOC) design method and flow from the view points in electronic application system. The advantage is chip is reduced in electronic devices and power consumption is also reduced. The disadvantage is physical design in Soc of electronic devices is little bit difficult [12].

MATERIALS AND METHODS

Processing Elements (PE[0], PE[1], PE[m+1], Regular PE): The structure of PE [0] is shown in Fig.1. It consists of an AND cell and a BSC. Each XOR cells and AND cells in the PE consists of (m+1) number of gates working in parallel. The regular PE, as shown in Fig.2, consists of three basic cells, e.g., the bit-shift cell (BSC), the AND cell and the XOR cell. The PE[m+1] of the systolic structure in Fig.5.3 consists of only an XOR cell, which performs bit-by-bit XOR operations of its pair of m-bit inputs

Delay Unit: In delay units are using D- Flip flop. The D flip-flop tracks the input, making transitions with match those of the input D. The D stands for "data"; this flip-flop stores the value that is on the data line. It can be thought of as a basic memory cell. A D flip-flop can be made from a set/reset flip-flop by tying the set to the reset through an inverter. The result may be clocked.

AC Unit: Besides, an Addition-Cell (AC) is required to perform the final addition of the outputs of the two systolic arrays, as shown in Fig 4. It performs the XOR operation.

BSC (Bit Shift Cell): The bit shifts are sometimes considered bitwise operations, because it operates only the binary representation of an integer instead of its numerical value; however, the bit shifts do not operate on pairs of corresponding bits and therefore cannot properly be called bit-wise. In these operations the digits are moved, or shifted, to the left or right. The BSC in the PE performs the bit-shift operation according to

Fig. 1: PE[0]

Fig. 2: Regular PE

Fig. .3: PE [m+1]

$$u \to v$$
 AC $w w \leftarrow u + v$

Fig. 4: AC unit

$$A^{i+1=}a_0^{i+1} + a_0^{i+1} + a_1^{i+1} \cdot \alpha + \dots + a_m^{i+1} \cdot \alpha$$
 (1)

Systolic Structure: A systolic is said to be reversible if there is a one-to-one and onto mapping between the vectors of inputs and outputs; thus the vector of inputs can be always reconstructed from the vector of outputs. Thus, the number of outputs in a reversible gate or circuits has to be the same as the number of inputs. Output functions of binary reversible logic gates equal to 1 for exactly half their input assignments are called balanced. Logic design of reversible circuits is quite different from designing conventional irreversible logic circuits. In reversible circuits have to use at least one gate is used to duplicate a signal. Moreover, for realization of non balanced Boolean functions with a reversible circuit, it is necessary to add constant signals to input of circuits. A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it and is closely related conceptually to arithmetic pipeline.

In a systolic array, data words flow from external memory in a rhythmic fashion, passing through many cells before the results emerge from the array's boundary cell and return to external memory. The external memory connected to the systolic array's boundary cell stores

Fig. 5: Systolic Multiplier

Fig. 6: Low Latency Systolic Multiplier

both input data and results. The underlying principle of systolic array is to achieve massive parallelism with a minimum communication overhead and generally speaking, a systolic array is easy to implement because of its regularity and easy to reconfigure because of its modularity. The classical logic synthesis methods can be used, but they generate too many number of gate output signals, making the circuit extremely complex. The basic design of systolic multiplier thus derived is shown inFig.5. It consists of (m+2) PEs and the functions of the PEs are shown in Fig 5. During each cycle period, the regular PE (from PE [2] to PE [m - 1]) not only performs the modular reduction operation. But also performs the bit-multiplication and bit-addition operations concurrently.

Low Latency Systolic Architecture: For irreducible AOP, m is an even number. Therefore, let l and P be two integers such that (m+1) = lP+r, where r is an integer in the range 0 = r = l. For example, if P=m/2, then l=2, r=1 can be rewritten as

$$C = \sum_{i=0}^{m/2} X_i + \sum_{i=\frac{m}{2}+1}^{m} X_i$$
(2)

One of the sum contains [(m/2) +1] partial products while the other has m/2 partial products. The systolic structure of Fig. 6 could be modified to a form shown in Fig. 6(a), which consists of two systolic branches. The upper branch consists of [(m/2) +2]PEs and the lower branch consists of (m/2+1) PEs and a delay cell. Besides, an Addition-Cell (AC) is required to perform the final addition of the outputs of the two systolic arrays, as shown in Fig.6 (b). It is observed that the two systolic

Fig. 7: Low-latency register-sharing systolic structure. (a) The systolic Structure. (b) Structure of PE [1]. (c) Structure of a regular PE (from PE [2] to PE [m/2-1]). (d) Structure of PE [m/2]. (e) Structure of PE [m/2+1].

branches in Fig. 5.6 share the same input operand and the PEs in both the branches perform the same operation except the last PE in each of the branches.

The proposed structure (Fig.7) requires [(m/2)+2] PEs and one AC. Each of the regular PEs consists of 2(m+1) XOR gates in a pair of XOR cells and 2(m+1) AND gates in a pair of AND cells. Besides, the AC requires (m+1) XOR gates.

These input undergone polynomial multiplication to do polynomial multiplication, the max no. of multipliers are used in order to reduce the no of multipliers by using irreducible algorithm. By this algorithm, No of inbuilt gates to frame an single multiplier have been reduced from 0 to m/2+1 level

RESULTS

The AND operation is used to perform multiplication of two or more inputs. If the inputs are 1,then it produce the result '1'.Otherwise it produce output '0'.is shown in Fig 8.

The Bit Shift Cell is used to shift the input to right by 1 bit position is shown in Fig 9.

The XOR operation is used to produce the result 1 if the inputs are different and produces result 0 if the inputs are same is shown in 0ig 10.

The processing element0 (PE0) produces the corresponding output to the given input and binary digit 0 or 1 by calling the function which is inbuilt in it to perform he specific operation is shown in Fig 11.

The processing element 1 (PE1) produces the corresponding output to the output produced by PE0 and binary digit 0 or 1 by calling the function which is inbuilt in it to perform he specific operation is shown in Fig 12.

The regular PE produces the output to the multiple inputs by comparing it with the binary digit 0 or 1 by calling the function which is inbuilt in it to perform he specific operation corresponding to the input given is shown in Fig 13.

The PE4 produces the corresponding output to the input and binary digit 0 or 1 by calling the function which is inbuilt in it to perform he specific operation and it is added to the additional cell to perform EX-OR operation is shown in Fig 14.

The M=6 systolic structures produces the output to the multiple inputs by comparing it with the binary digit 0 or 1 by calling the function which is inbuilt in it to perform he specific operation corresponding to the input given is shown in Fig 15.

The low latency systolic structure produces the corresponding output to the input and binary digit 0 or 1 by calling the processing element which consists of function which is to be performed is inbuilt in it to perform the specific operation is shown in Fig 16.

The Register Sharing multiplier systolic produces the output to the multiple inputs by comparing it with the binary digit 0 or 1 by calling the function which is inbuilt to perform the specific operation and it is added to the additional cell to perform EX-OR operation. The Register Sharing multiplier mainly used to minimize the register requirement is shown in Fig 17.

Middle-East J. Sci. Res., 21 (11): 2064-2071, 2014

	Messages							
□- ◆ <i>M_S</i> □- ◆ <i>M_S</i>	ystolic_Multipi	0000101 1000010	0000101					
- 18 A	Now	300 ns	111111	200 ns	 400 ns	600 ns	800 ns	100
£ 2 9	Cursor 1	0 ns	0 ns					

Fig. 9: Bit Shift Cell

Messages		
± ♦ /VAC/A	10011	10011
⊕ ♦ /VAC/B	01100	01100
	11111	
≗≣⊛ Now	200 ns	
🔓 🖉 🗧 Cursor 1	0 ns	Ons

Messages			
/M_Systolic_Multiplier/PE0/A /M_Systolic_Multiplier/PE0/P	1111110 St0	1110001	1111110
	0111111	1111000	0111111
M_Systolic_Multiplier/PE0/Y	0000000	1110001	0000000
M_Systolic_Multiplier/PE0/M_PE10/A	1111110	1110001	1111110
M_Systolic_Multiplier/PE0/M_PE10/B	0111111	1111000	0111111
/M_Systolic_Multiplier/PE0/M_PE20/SIn	St0		
M_Systolic_Multiplier/PE0/M_PE20/MIn	1111110	1110001	1111110
M_Systolic_Multiplier/PE0/M_PE20/MOut	0000000	1110001	0000000
Now Now	700 ns		
🔓 🌽 Cursor 1	0 ns	0 ns	

Fig. 11: Processing Element0 (PE0)

Messages	1 5			
/M_Systolic_Multiplier/PE1/A /M Systolic Multiplier/PE1/P	0111111 Sti	11111000	0111111	
/M_Systolic_Multiplier/PE1/8	0000000	1110001	20000000	
M_Systolic_Multiplier/PE1/X	1011111	0111100	1011111	
M_Systolic_Multiplier/PE1/Y	0111111	1111000	0111111	
M_Systolic_Multiplier/PE1/Z	0000000	1110001	0000000	
M_Systolic_Multiplier/PE1/M_PE10/A	0111111	1111000	0111111	
M_Systolic_Multiplier/PE1/M_PE10/B	1011111	0111100	1011111	
/M_Systolic_Multiplier/PE1/M_PE20/SIn	St1			
M_Systolic_Multiplier/PE1/M_PE20/MIn	0111111	1111000	0111111	
M_Systolic_Multiplier/PE1/M_PE20/	0111111	1111000	0111111	
Now Now	700 ns			
🚔 🖉 Cursor 1	0 ns	0 ns		

Fig. 12: The Processing Element 1 (PE1)

Messages				
M_Systolic_Multipli	1011111	0111100	1011111	
•	0111111	1111000	10111111	
M_Systolic_Multipli	0000000	1110001	20000000	
/M_Systolic_Multipli	St1			
/M_Systolic_Multipli	1101111	0011110	1101111	
/M_Systolic_Multipli	1011111	0111100	1011111	
H_ /M_Systolic_Multipli	0111111	0001001	0111111	
M_Systolic_Multipli	1011111	0111100	1011111	
H-4 /M_Systolic_Multipli	1101111	0011110	1101111	
/M_Systolic_Multipli	St1			
M_Systolic_Multipli	1011111	0111100	1011111	
M_Systolic_Multipli	1011111	0111100	1011111	
Now Now	700 ns			
Cursor 1	0 ns	0 os		

Fig. 13: Regular PE

Messages			
🕰 🤣 /M_Systolic_Multiplier/PE6/A	1111101	1100011	1111101
M_Systolic_Multiplier/PE6/8	0001111	0101011	0001111
M_Systolic_Multiplier/PE6/C	0000000	0000000	
/M_Systolic_Multiplier/PE6/x	St0		
M_Systolic_Multiplier/PE6/U	0000000	0000000	
M_Systolic_Multiplier/PE6/W	0001111	0101011	20001111
/M_Systolic_Multiplier/PE6/PE2/SIn	St0		
M_Systolic_Multiplier/PE6/PE2/MIn	1111101	1100011	1111101
M_Systolic_Multiplier/PE6/PE2/MOut	0000000	0000000	
M_Systolic_Multiplier/PE6/PE3/A	0001111	0101011	0001111
M_Systolic_Multiplier/PE6/PE3/8	0000000	0000000	
M_Systolic_Multiplier/PE6/PE3/Out	0001111	0101011	0001111
Now Now	700 ns	ns 200 ns	400 ns 600 ns
Gurster 1		0.00	

Fig. 14: Processing Element4 (PE4)

Messages				
M_Systolic_Multiplier/A	-No Data-	1110101	0101010	1110000
M_Systolic_Multiplier/B	-No Data-	1000010	10 10 10 1	1110010
M_Systolic_Multiplier/C	-No Data-	0 1000 10	1100110	0010111
M_Systolic_Multiplier/X1	-No Data-	11111010	0010101	0111000
M_Systolic_Multiplier/X2	-No Data-	0111101	100 10 10	0011100
M_Systolic_Multiplier/X3	-No Data-	1011110	0100101	0001110
M_Systolic_Multiplier/X4	-No Data-	0101111	10 100 10	0000111
M_Systolic_Multiplier/X5	-No Data-	1010111	0101001	1000011
M_Systolic_Multiplier/X6	-No Data-	1101011	10 10 100	1100001
M_Systolic_Multiplier/X7	-No Data-	0000000	1010100	0000000
M_Systolic_Multiplier/Y1	-No Data-	1110101	0101010	1110000
M_Systolic_Multiplier/Y2	-No Data-	0000000		0111000
Now Now	800 ns			
Cursor 1	1568 ns			

Fig. 15: M=6 systolic structures

In Table No 1,Here mentioned the logic utilization of systolic structure. Basically slices occupied in logic gate very less only because then only reached the area time efficient implementation.The input is number of bonded used Input Output Bank(IOB) for the ports.

In Table No 2, The device ulitization of systolic structure consists of related logic and unrelated logic. In this low latency of systolic array have used additional

JTAG gate count for IOBs for reducing the period and latency.In giving the input of look up table for reducing the purpose of slices in fnite field multiplication.

In Table No 3, contains the register sharing technique that is mainly used for reduce the register components in the logic gates. Here the number of slices used for utilization of related logic is 200 i.e., the purpose of reduce the components in the processor, power consumption and get the area time efficiency of finite field implementation.

Middle-East J. Sci. Res., 21 (11): 2064-2071, 2014

Mowlatercy_syst#A 110001 110101 100010 110000 011101 Mowlatercy_syst#A 011101 100010 1000010 110000 011101 Mowlatercy_syst#A 0001001 110001 011101 011101 0111010 Mowlatercy_syst#A 000000 111001 0110001 0110001 0011001 0111000 Mowlatercy_syst#A 0000000 111001 0101010 1110000 0000000 111000 Mowlatercy_syst#A 0000000 111010 0101010 0101000 0000000 Mowlatercy_syst#A 0000000 111010 0101010 0101010 010000 0000000 Mowlatercy_syst#A 0011100 0000000 1110010 010000 010000 0000010 Mowlatercy_syst#A 001110 0000000 1100000 1100000 1100000 1100000 Mowlatercy_syst#A 0001110 0000000 1100101 0000000 00001110 Mowlatercy_syst#A 0001110 00000000 10100101 00000110	Messages							
1 Adoukatency_syn/R 0111101 1000010 1010010 1010010 0111101 0011001 1 Adoukatency_syn/R 0000000 1110101 0100110 1010010 00011001 0101110 00011001 0101100 00011001 0100110 0100110 0100110 0100110 0100110 0100110 0100110 0100110 0100110 0100110 010000 0000000 011000 0000000 011000 0000000 011000 0000000 011000 0000000 011000 0000000 011000 011000 011000 0000000 0100110 0000000 0100010 010000 011000 001100 0000000 0100010 0000000 001100 0001100 0000000 001100 0000000 0010100 0000100 0000110 0000000 0001100 0000000 0001100 0000010 0000110 0000100 0000110 0000110 0000110 0000110 0000110 0000110 0000110 0000110 0000110 00001100 0000110 000011	Mowlatency_sys/A 1100001	1110101	0101010	11100110	1110000	11100001		
Chowlatency_syst/M 001001 0100010 110001 000000 111000 0000000 0 Chowlatency_syst/M 000000 111000 000000 111000 0000000 0 Chowlatency_syst/M 000000 111000 000000 111000 0000000 0 Chowlatency_syst/M 000000 111000 100001 0000000 0		1000010	1010101	1000010	11110010		0111101	
1 Moviatercy_synM1 0000000 110000 0000000 0 1 Moviatercy_synM3 011000 0000000 110000 0000000 1 Moviatercy_synM3 0011100 0000000 0 0 0 1 Moviatercy_synM3 0011100 0000000 1100010 0000000 0	Mowlatency_sys/Y 001100:	0100010	1100110	11111101	0010111	0101110	0011001	
c. Advalater(v_synAN2 Novlater(v_synAN2 C) 1110000 (000000 0000000 (110011 0000000 (100110 0110001 (100011 0000000 (100110 0000000 (100110 0000000 (100110 0000000 (100110 0000000 (100110 0000000 (100010 0000000 (100010 0000000 (100010 0000000 (100010 0000000 (100010 0000000 (100000 000000 0000000 (100000 0000000	Mowlatency_sys/M1 0000000	1110101	0101010	11100110	1110000	1100001	0000000	
novlatency_synAtt 0000000 110101 2010101 110010 0000000 00000110 0000000 00000110 0000000 0000110 0000000 00001110 0000000 00001110 0000000 00001110 00000110 000001110 0000000 00001110 000001110 0000000 00001110 000001110 000001110 0000000 00001110 000001110 000001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 00001110 000001110 00000000 <t< td=""><td>Mowlatency_sys/M2 1110000</td><td>0000000</td><td></td><td></td><td>0111000</td><td>11110000</td><td></td><td></td></t<>	Mowlatency_sys/M2 1110000	0000000			0111000	11110000		
1 Advokatercy_synAM4 0111000 0000000 1001010 0111000 0111000 1 Advokatercy_synAM4 0111000 0110000 0110000 0111000 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0001100 0001100 0001100 0001100 0000110 0000000 00101101 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000000 0001110 0000110	Mowlatency_sys/M3 0000000	A110101	0101010	11100110	1110000	11100001	0000000	
1 Movidatercy_symM5 1110000 1100000 1100000 1100000 1100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 1000000 1000000 1000000 10000000 10000000 1000000 1000000		0000000	1001010	0000000	0011100	0111000		
Image: Movilatercy_sym/M6 0011100 0000000 110010 1001000 1000100 1000100 1000100 1000100 1000100 1000000 1001000 1000000 1000000 10000011 0000000 10000011 0000000 10000011 0000000 10000011 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 00000110 0000000 1001010 1000001 1001000 1000001 1001000 1000001 1001000 1000001 1001000 0000000 1001000 0000000 0000000 1001000 0000000 0000000 0000000 0000000 0000000 1000010	Mowfatency_sys/M5 1110000	1110101	10 10 10 10	1100110	1001000	0010001	1110000	
0- //doubleterry_syn/M2 1001000 110101 1100000 1100100 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1001000 1000100 1000100 1000010 1000000 1001100 1000000 1000011 1000000 1000011 1000000 1000011 1000000 1000011 1000000 1000011 1000000 1000011 1000000 1000011 1000000 1000011 1000001 100001 1000001	Mowlatency_sys/M6 0011100	0000000				_	0011100	
1 Mowlatercy_spiRN1 0001110 0000000 1010016 0000000 10001116 0 Mowlatercy_spiRN1 0000110 0000000 1010016 0000000 100001116 0 Mowlatercy_spiRN1 0001110 0000000 1010101 0000000 1000011 0 Mowlatercy_spiRN1 0001110 0000000 1010101 0000000 1000011 0 Mowlatercy_spiRN1 0001110 0000000 1010101 0000110 00001110 0 Mowlatercy_spiRN1 0001110 1010101 1010101 0001110 00001110 0 Mowlatercy_spiRN1 0001110 1010101 1010101 1000011 0000110 0000110 0 Mowlatercy_spiRN1 0001000 1100010 1100010 1100001 1000001 1000010 100001 100001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 10000		1110101	1100000	11100110	1010100	0101001	1001000	
	Mowlatency_sys/N1 0001110	0000000	10 100 10	0000000			0001110	
C Movilatency_spiRAD 0001110 0000000 1010010 0000000 1000011 C Movilatency_spiRAD 00001110 0000000 1010010 0000000 10000111 C Movilatency_spiRAD 00001110 0000011 0000000 1010010 0000000 10000111 C Movilatency_spiRAD 0001110 0101010 1010010 1000000 1100000 1100000 1100000 1100000 1100000 1000001 1000001 1000001 1000001 1000000 1100000 1000000 1000000 1000000 1000000 1000000 110000 10000000 10000000 1000000	All Mowletency_aya/N2 000000	1010111	0000000	0011011	1000011	0000111	0000000	
D Mondatency_privAt 10000111 0000000 1010100 00000011 10000111 D Mondatency_privAt 0000110 1010101 1010101 10100011 1000011 D Mondatency_privAt 0001110 1010101 1010101 1010101 1010101 1010101 D Mondatency_privAt 1010101 1010101 1010101 1010101 1010101 1010101 D Mondatency_privAt 1000011 1010101 1010101 1010101 1010101 1010101 D Mondatency_privAt Sto 0 1010010 1110001 1010001 1000001 00000000 D 1000011 1110101 0101010 1100010 1100001 00000000 0000000 <th0< td=""><td>Mowlatency_sys/N3 0001110</td><td>0000000</td><td>110 100 10</td><td>0000000</td><td></td><td></td><td>0001110</td><td></td></th0<>	Mowlatency_sys/N3 0001110	0000000	110 100 10	0000000			0001110	
D- Moviatercy_spiN5 0001110 101011 101001 0001101 1000011 0000110 D- Moviatercy_spiN7 100100 110101 101000 101010 101010 101010 D- Moviatercy_spiN7 100110 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 100001 100001 1000000 100000 100000	Mowlatency_sys/N4 1000011	0000000	1010100	0000000			1000011	
n Movidatency_syn(D1) 1010100 111010 1110000 1100110 1010100 1000101 1000101 1000101 1000101 1010000 1000001 00000000 1000001 1100000 1000001	Mowlatency_sys/N5 0001110	1010111	1010010	0011011	1000011	0000111	0001110	
no. Movidatercy_grap. 100101 101011 1000001 1000001 1000001	Mowlatency_sys/01 1010100	1110101	1100000	1100110	1010100	0 10 100 1	1010100	
B- Mowlatercy_systP 1100001 1110101 D010101 1100010 1100001 1000001 B- Mowlatercy_systP Sti D000000 1110101 D010101 1110000 1100001 D000000 B- Mowlatercy_systP 1100001 1110101 D010101 1110010 D000000 D0000000 D0000000 D00	Mowlatency_sys/02 100110:	1010111	10000110	0011011	1000011	0000111	1001101	
Movidations, grappin. 500 District, Statemark, grappin. 500 District, Statemark, grappin. 110001 District, Statemark, grappin. 110001 District, Statemark, grappin. 110001 District, Statemark, grappin. 110001 District, Statemark, grappin. 1100001 District, Statemark, grappin. 1100001 District, Statemark, grappin. 1100001 Movidatenark, grappin. 500 District, Statemark, grappin. 5000000 District, Statemark, grappin. 5000000 District, Statemark, grappin. 50000000 District, Statemark, grappin. 50000000 District, Statemark, grappin. 5000000 District, Statemark, grappin. 5000000 District, Statemark, grappin. 5000000 Distrit, Statemark, grappin. 50000000	Mowlatency_sys/P 1100001	1110101	0101010	1100110	1110000	1100001		
D- //doubletercy_systP 0000000 1110101 1010101 1100010 1100000 00000000 D- //doubletercy_systP 1100001 1110101 1010101 1100001 1100000 00000000 D- //doubletercy_systP 1100001 1110101 10101010 1100001 1100001 0000000 D- //doubletercy_systP 1100001 1110101 10101010 1110000 1100001 0000000 D- //doubletercy_systP 1100001 1110101 1100101 1110000 1100001 0000000 D- //doubletercy_systP 1100001 1110101 1100001 1100001 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 0000000 </td <td>/Nowlatency_sys/P St0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	/Nowlatency_sys/P St0							
Cl / Mondatency_grap.P 1100001 1110101 1010101 1100011 1100001 Cl / Mondatency_grap.P 1000001 1110101 0101010 1100001 1100001 Cl / Mondatency_grap.P 100001 1110101 0101010 1100001 1100001 Cl / Mondatency_grap.P 500 100001 1110101 0101010 1100001 1000001 Cl / Mondatency_grap.P 500 1000001 1110101 0101010 1100001 1000001 Cl / Mondatency_grap.P 500 0000000 110001 0101010 1100001 0000000 Cl / Mondatency_grap.P 1000001 1110101 0101010 1100001 0000000 Cl / Mondatency_grap.P 1000001 1110101 0101010 1100000 0000000 Cl / Mondatency_grap.P 1100001 1110010 0101010 11100000 0000000 Cl / Mondatency_grap.P 511 0000000 1110010 0101010 11100000 0000000 Cl / Mondatency_grap.P	Mowlatency_sys/P 0000000	1110101	0 10 10 10	1100110	1110000	1100001	0000000	
D - / Movilatency_systP 1100001 111010. 1010101 1100011 1100000 - / Movilatency_systP 1000001 1110101. 10101010 1100000 1100000 - / Movilatency_systP 550 0 1100001 1110000 1100000 - / Movilatency_systP 550 0 1100010 11100000 1100000 - / Movilatency_systP 1000001 111010 10101010 11100000 1000000 - / Movilatency_systP 1000001 111010 10101010 11100000 1000001 - / Movilatency_systP 1000001 1110101 10101010 11100000 1000001 - / Movilatency_systP 1100001 1110101 10101010 11100000 0000000 - / Movilatency_systP 1100001 1110010 11100010 0000000 0000000 - / Movilatency_systP 1100001 11100010 11100001 0000000 00000000 00000000 - / Movilatency_systP 1100001 00000000 01101010 11100010 <	Mowlatency_sys/P 1100003	1110101	10101010	1100110	1110000	1100001		
□- //Movilatency_systP 1100001 1110101 0101010 1100010 1100001 □- //Movilatency_systP 100001 1110101 0101010 1100010 1100001 □- //Movilatency_systP 1000000 1110101 0101010 1100010 1100000 □- //Movilatency_systP 1000000 1110101 0101010 1100010 1000000 □- //Movilatency_systP 1000000 1110101 0101010 1100010 0000000 □- //Movilatency_systP 1100000 0000000 1110101 0101010 1100010 0000000 □- //Movilatency_systP 1100000 0000000 1110010 00000000 1100000 00000000 □- //Movilatency_systP 1110000 00000000 1110010 01100001 00000000 □- //Movilatency_systP 1110000 00000000 1110000 00000000	Mowlatency_sys/P 1100001	1110101	10 10 10 10	1100110	1110000	1100001		
Movidatency_gryuP 550 Display 1100001 111010 101010 1100001 Display Movidatency_gryuP 0000000 1100011 1100001 1000001 Display Movidatency_gryuP 0000000 1110101 0101010 1110001 1000001 Display Movidatency_gryuP 1100001 1110101 1110010 1100000 Display Movidatency_gryuP 1100001 1110101 1110010 1100000 Movidatency_gryuP 1100001 1110101 1110010 1100000 0000000 Movidatency_gryuP Stit 0101010 1110010 1110000 0000000 Movidatency_gryuP Stit 0101010 1110010 0000000 0000000 Movidatency_gryuP Stit 0101010 11100010 0110000 0000000 Display Stit 0110000 0000000 01110000 1110000 Stit 0110000 00000000 01110000 01110000 0110000	/Viowlatency_sys/P 110000:	11110101	10 10 10 10	1100110	1110000	11100001		
D- √ Mondatency_psyRP 1100001 111010. 1010101 1100001 100000. D- √ Mondatency_psyRP 0000000 1110101. 0101010 11100001 0000000 1000001 D- √ Mondatency_psyRP 0000000 1110101. 0101010 11100001 0000000 1000001 D- √ Mondatency_psyRP 0000000 1110101. 0101010 1110000 1000001 0000000 D- √ Mondatency_psyRP 0000000 1110101. 0101010 1110000 1000001 0000000 D- √ Mondatency_psyRP 00000000 1110101. 0101010 1110000 1000001 0000000 III0000 0000000 1110101. 0101010 1100000 1000001 0000000 III0000 0000000 1110101. 0101010 1110000 1000001 0000000 III0000 00000000 1110010 01100001 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 00000	/Nowlatency_sys/P St0							
D-√ /Movilatency_systP 00000000 1110101 0101010 110010 0100000 D-√ /Movilatency_systP 0000000 1110101 0101010 1100010 0100001 D-√ /Movilatency_systP 0000000 1110101 0101010 1100001 0000000 Advalatency_systP tst 010001 010000 0110000 0110000 0110000 C+ /Movilatency_systP tst 0110000 0110000 0110000 0110000 C+ /Movilatency_systP tst 0110000 0110000 0110000 0110000 C+ /Movilatency_systP tst 0110000 0110000 0110000 0110000 0110000 C+ /Movilatency_systP 110000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 000	Mowlatency_sys/P 110000:	1110101	10 10 10 10	11100110	1110000	1100001		
n < //doubletercy_systP	Mowlatency_sys/P 0000000	1110101	10 10 10 10	1100110	1110000	11100001	10000000	
D- /Mowlatency_systP 00000000 1110101 0101010 1100001 0000000 D- /Mowlatency_systP 110000 0000000 01110000 1100000 D- /Mowlatency_systP 110000 0000000 01110000 1110000	Mowlatency_sys/P 110000:	11110101	10 10 10 10	11100110	1110000	110000		
Anoulatercy_septP St Comparison of the second secon	Mowlatency_sys/P 000000	(11)010	0 10 10 10	1100110	1110000	1100001	0000000	
D- //doubtency_sys/P 1110000 0000000 2 #5 # Now 1700 rs 1700 rs	Mowlatency_sys/P St1							
2 \$5 9 Nov 1700 ns	Mowlatency_sys/P 1110000	0000000			0111000	1110000		
	A Real Now	1700 ns						
Over 1 1568 m	Ourser 1	1568 ns					1665	(ne)

Fig. 16: low latency systolic structure

Messages						
	1110101	1100110	1100001	1110101		
M_TopModule/B	1000010	1000010	0111101	1000010		
	0100010	1111101	0011001	0 1000 10		
M_TopModule/M1	1110101	1100110	2000000	11110101		
M_TopModule/M2	0000000	0000000	20001110	0000000		
M_TopModule/A1	1110101	1100110	2000000	11110101		
M_TopModule/A2	0000000	0000000	Ž1110000	0000000		
M_TopModule/A3	1110101	1100110	1100001	11110101		
M_TopModule/A4	1010111	0011011	2000000	11010111		
M_TopModule/A5	0000000	0000000	0001110	0000000		
M_TopModule/B1	1110101	1100110	1110000	11110101		
M_TopModule/B2	0000000	0000000	0111000	0000000		
Now Now	900 ns	111111111111	200 ns 400 ns	600 ns	800 ns	100
Cursor 1	0 ms	0 ns				

Fig. 17: Register Sharing Multiplier

Table 1: Device Utilization Summary Systolic

Device Utilization Summary					
Logic Utilization	Used	Available	Utilization	Note(s)	
Number of 4 input LUTs	420	7,168	5%		
Logic Distribution					
Number of occupied Slices	210	3,584	5%		
Number of Slices containing only related logic	210	210	100%		
Number of Slices containing unrelated logic	0	210	20%		
Total Number of 4 input LUTs	420	7,168	5%		
Number of bonded IOBs	63	141	44%		
Total equivalent gate count for design	3.087				
Additional JTAG gate count for IOBs	3.024				

Table 2: Low Latency Systolic Architecture

Device Utilization Summary					
Logic Utilization	Used	Available	Utilization	Note(s)	
Number of 4 input LUTs	399	7,168	5%		
Logic Distribution					
Number of occupied Slices	200	3,584	5%		
Number of Slices containing only related logic	200	200	100%		
Number of Slices containing unrelated logic	0	200	0%		
Total Number of 4 input LUTs	399	7,168	5%		
Number of bonded IOBs	63	141	44%		
Total equivalent gate count for design	2,835				
Additional JTAG gate count for IOBs	3.024				

Table 3: Register Sharing Lo	w Latency Systolic Architecture
------------------------------	---------------------------------

Device Utilization Summary				
Logic Utilization	Used	Available	Utilization	Note(s)
Number of 4 input LUTs	399	7,168	5%	
Logic Distribution				
Number of occupied Slices	200	3,584	5%	
Number of Slices containing only related logic	200	200	100%	
Number of Slices containing unrelated logic	0	200	0%	
Total Number of 4 input LUTs	399	7,168	5%	
Number of bonded <u>IOBs</u>	63	141	44%	
Total equivalent gate count for design	2,772			
Additional JTAG gate count for IOBs	3,024			

CONCLUSION

Efficient systolic design for the multiplication over GF (2^m) based on irreducible AOP is proposed. This derived a low-latency bit-parallel systolic multiplier. Compared with the existing systolic structures for bit-parallel realization of multiplication over GF (2^m), the proposed one is found to involve less area, shorter critical-path and lower latency. From ASIC and FPGA synthesis results to find that the proposed design involves significantly less ADP and PDP than the existing designs. Moreover, the proposed design can be extended to further reduce the latency. The usage of Noval Cut-set Retiming reduces the critical path to one XOR gate thus the complex systolic structure have been spiltted into two or more parallel systolic branches and each one is fed with same input operand and shares same input operand register thus by using irreducible All One Pollynomialalgorithm, overall circuit complexity is reduced and which can be implemented for cryptography and error control technique.

REFERENCES

- Berk Suran, 2004. A Generalized Method for constructing subquadratic complexity GF(2^k) Multipliers, IEEE Trans. Computers, 53(9): 1097-1105.
- Hanho Lee, 2003. High speed VLSI architecture for parallel Reed-Solomon decoder, IEEE Trans. Coputers, 11(2): 288-294.
- Neethu Johny and Binoy Joseph, 2013. An efficient Systolic multiplier forGF(2m) based on All One Polynomial,journal, Trans. Computers, 1: 2320-2351.

- Chiou Yng Lee and Che Wun Choiu, 2005. Low complexity bit parallel dual basis multipliers using the modified Booth's algorithm, journal Trans.computers, 31: 444-459
- Jean Claude, 2010. Subquadratic Space complexity Binary field multiplier using double polynomial representation, IEEE. Trans. Computers, 59(12): 1585-1597.
- Henriqez, 2003. Parallel Multipliers Based on Special Irreducible pentanomials, IEEE, Trans. Computers, 52(11): 1-7.
- Yadollah Eslami, 2006. An area efficient Universal cryptography processor for smart cards, IEEE, Trans. Computers, 14(1): 44-51
- Leong, H.W., 2002. Amicrocoded elliptic curve processor using FPGA technology, IEEE. Trans. Computers, 10(5): 550-559.
- Cancio Monterio, 2013. Low power bit parallel cellular multiplier implementation in secure dual rail adiabatic logic, IEEE. Trans. Computers, 3(4): 10-19.
- Bimal Kumar Meher, 2009. A effectiveness of various implementation options of finite field arithmetic on elliptic curve cryptosystem, IEEE. Trans. Computers, 3(4): 1793-8201.
- Ashutosh Kumar singh, 2009. Error detecting dual basis bit parallel systolic multiplicationar chitectureover GF(2m), Jornals. Trans. Computers, 7(4): 336-342.
- Kazutoshi Wakabayashi, 2000. C-Based SoC design flow and EDA tools an ASIC andsystemVendor prespetive, IEEE. Trans. Computers, 3(4): 1507-1522.