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Abstract: This paper presents an artificial neural network (ANN) approach to electric load forecasting. The
ANN is used to learn the relationship among past, current and future temperatures and loads. In order to
provide the fore- casted load, the ANN interpolates among the load and temperature data in a training data set.
The average absolute errors of the one-hour and 24-hour ahead forecasts in our test on actual utility data are
shown to be 1.40% and 2.06%, respectively. This compares with an average error of 4.22% for 24hour ahead
forecasts with a currently used forecasting technique applied to the same data.
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INTRODUCTION problems with the time series approach include the

Various techniques for power system load the reasons this method often gives inaccurate results is.
forecasting have been proposed in the last few decades. that it does not utilize weather information. There is a
Load forecasting with lead-times, from a few minutes to strong correlation between the be-havior of power
several days, helps the system operator to efficiently consumption and weather variables such as temperature,
schedule spinning reserve allocation. In addition, load humidity, wind speed and cloud cover.This is especially
forecasting can provide information which is able to be true in residential areas. The time series approach mostly
used for possible energy interchange with other utilities. utilizes computationally cumbersome matrix-oriented
In addition to these economical reasons, load forecasting adaptive algorithms which, in certain cases, may be
is also useful for system security. If applied to the system unstable. Most regression approaches try to find
security assessment problem, it can provide valuable functional relationships between weather variables and
information to detect many vulnerable situations in current load demands. The conventional regression
advance. Traditional computationally economic approaches use linear or piecewise-linear representations
approaches, such as regression and interpolation, may for the forecasting functions. By a linear combination of
not give suffi- ciently accurate results. Conversely, these representations, the regression approach finds the
complex algorithmic methods with heavy computational functional relationships between selected weather
burden can converge slowly and may diverge in certain variables and load demand. Conventional techniques
cases.A number of algorithms have been suggested for assume,  without   justification,   a   linear  relationship.
the load forecasting problem. Previous approaches can be The functional relationship between load and weather
generally classified into two categories in accordance with variables, however, is not stationary, but depends on
techniques they employ. One approach treats the load spatio-temporal elements. Conventional regression
pattern as a time series signal and predicts the future load approach does not have the versatility to address this
by using various time series analysis techniques [1-7]. temporal variation. It, rather, will produce an averaged
The second approach recognizes that the load pattern is result. Therefore, an adaptable technique is needed. In
heavily dependent on weather variables and finds a this paper, we present an algorithm which combines both
functional relationship between the weather variables and time series and regression approaches. Our algorithm
the system load. The future load is then predicted by utilizes a layered perceptron artificial neural net- work
inserting the predicted weather information into the (ANN). As is the case with time series approach,the ANN
predetermined functional relationship [8-11]. General traces  previous load patterns and predicts a load pattern

inaccuracy of prediction and numerical instability. One of
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using recent load data. Our algorithm uses weather (5)
information for modeling. The ANN is able to perform
nonlinear modeling and adaptation. It does not require
assumption of any functional relationship between load
and weather variables in advance. We can adapt the ANN
by exposing it to new data. The ANN is also currently
being investigated as a tool in other power system
problems such as security assessment, harmonic load
identification, alarm processing,fault diagnosis and
topological observability [12-18].

Algorithm: The activation function of the artificial
neurons in ANNs implementing the the sum of the inputs
x multiplied by theirrespective weights w :ji

(1)

We can see that the activation depends only on the
inputs and the weights.If the output function would be
the identity (output=activation), then the neuron would
be called linear. But these have severe limitations. The
most common output function is the sigmoidal function
[19-27]:

(2)

The goal of the training process is to obtain a desired
output when certain inputs are given. Since the error is
the difference between the actual and the desired output,
the error depends on the weights and we need to adjust
the weights in order to minimize the error. We can define
the error function for the output of each neuron:

(3)

We take the square of the difference between the
output and the desired target because it will be always
positive and because it will be greater if the difference is
big and lesser if the difference is small. The error of the
network will simply be the sum of the errors of all the
neurons in the output layer:

(4)

We can adjust the weights using the method of
gradient descendent:

We “only” need to find the derivative of E in respect to
w .ji

(6)

And then, how much the output depends on the
activation, which in turn depends on the weights (from (1)
and (2)):

(7)

And we can see that (from (6) and (7)):

(8)

And so, the adjustment to each weight will be (from
(5) and (8)):

(9)

We also need to see how the error of ik the network
depends on the adjustment of v . So:ik

(10)

Where:

(11)

And, assuming that there are inputs u into the neuron
with v  (from (7)):ik

(12)

Test   Cases   and  Result:   Hourly   temperature   and
load data for Seattle/Tacoma area in the interval of Nov.
1, 1988 - Jan. 30, 1989 were collected by the Puget Sound
Power and Light Company We used this data to train the
ANN and test its perfor-mance [15-18].  Our focus  is on
a  normal   weekday   (i.e.   no   holiday   or    weekends).



Middle-East J. Sci. Res., 18 (3): 396-400, 2013

398

This  approach  of  classifier  evaluation is known as a Where
jack-knife method.The ANN was trained to recognize the k = day of predicted load, 
following cases L(k) = Total load at day k, 

Case 1: Peak load of the day T2(k) = Peak temperature at day k, 
Case 2: Total load of the day T3 (k) = Lowest temperature at day k.
Case 3: Hourly load

Case 1: The topology of the ANN for the peak load forecasting with one hour of lead time is as follows; 
forecasting is as follows;

Input Neurons: Tl(k), T2(k) and T3(k) Hidden Neurons: 10 hidden neurons 
Hidden Neurons: 5 hidden neurons Output Neuron: L(k) 
Out,put Neuron: L(k)

Where L(x) = Load at hour x, 
k = day of predicted load, T(x) = Temperature at hour x, 
L(k) = Peak load at day k, (x) = predicted temp. for hour x
Tl(k) = Average temperature at day k, 
T2(k) = Peak temperature at day k, In training  stage,  T(x)  was used instead of  (x).
T3(k) = Lowest temperature at day k. The lead times of predicted temperatures,  (x),vary from

Case 2: The topology of the ANN for the total load actual and fore- casted loads with one-hour and 24-hour
forecasting is as follows: lead times. the error gradually increases as the lead hour

Input Neurons: Tl(k), T2(k) and T3(k) reasons for this error pattern is the periodicity of
Hidden Neurons: 5 hidden neurons temperature  and  load pattern. Even though they are not
Output Neuron: L(k) 

Tl(k) = Average temperature at day k,

Case 3: The topology of the ANN for the hourly load

Input Neurons: k, L (k-2), L (k-1), T (k-2 ), T(k-1) and (k)

k = Hour of predicted load 

16 to 40 hours.Figure 1 shows examples of the hourly

grows. This is true up to 18 hours of lead time. One of the

Fig. 1: a,b,c,d:  Hourly Load Forecasting and Actual Load (in MW)  (black:  actual load, blue:1-hour lead forecast, red:
24hour lead  forecast)
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