
Middle-East Journal of Scientific Research 17 (7): 992-997, 2013
ISSN 1990-9233
© IDOSI Publications, 2013
DOI: 10.5829/idosi.mejs r.2013.17.07.12145

Corresponding Author: Vadim Gennadyevich Zhukov, Siberian State Aerospace University named after ac. M.F. Reshetnyov,
Avenue named after “Krasnoyarskiy Rabochiy”, 31, 660014, Krasnoyarsk, Russia.

992

Privacy-preserving Protocol over Vertically Partitioned Data
in Multiparty K-means Clustering

Vadim Gennadyevich Zhukov and Alexey Vyacheslavovich Vashkevich

Siberian State Aerospace University named after ac. M.F. Reshetnyov, Krasnoyarsk, Russia

Abstract: The article examines and analyzes existing solutions of privacy-preserving computations over
vertical partitioning in multiparty clustering by k-means. The modifications of cryptographic primitives to
eliminate detected deficiencies are offered. The results of comparative analysis of advanced cryptographic
primitives are given. The protocol is developed that preserves data privacy with few parties considering
their possible collusion. The conclusions on the effectiveness of the improved cryptographic primitives are
made and the recommendations how to use the developed protocol are given.

Key words: Secure multiparty computations • clustering • k-means • secure dot product • secure sum

INTRODUCTION

 With vertically partitioned data in multiparty
clustering of k-means (a description of the algorithm
can be found in the work of Hartigan and Wong) [1]
each party has a set of attributes for every object
(parties have different data columns). The centers of the
clusters are randomly generated and are not private.
Protected are such steps of k-means as the calculation
of distances from an object to centers, the choice of the
minimal distance and also checking the conditions of
stopping.
To preserve privacy two approaches are offered:

1. First, between the “particular” parties the distance

is distributed from the object to all the clusters,
they find the shortest distance. However, they
know the distance from the object to the clusters in
a rearranged order. Next they report the
“rearranged” number of the shortest distance to the
party who knows the rearrangement and it sends
out the real number of the smallest distance. In the
algorithm special parties are required who conduct
additional operations and must not collude with
each other [2, 3].

2. All the parties do not summarize the distance from
the object to the clusters; they summarize the
difference between the distances from the object to
the clusters. Therefore, after the summation it is
sufficient to determine if the difference is more
than zero or not, to calculate the sum is not
necessary. The algorithm does not have particular
parties [4, 5].

 In all the algorithms the collusion of several
(depending on the algorithm) parties creates the
problem of security: the data of the victims of collusion,
in some degree, will be disclosed. Thus, the aim of this
work is to improve the protocol of preserving data
privacy for vertical partitioning.

The analysis of existing solutions: In the solution of
Vaidya and Clifton [2] the permutation algorithm
offered by Du and Attala [6] was used to find the
nearest cluster and homomorphic encryption was used
to get the distances to the cluster. The protocol requires
three particular parties. One of them knows the
permutation, the other two know the results of
comparing the distances between the dot and the centers
of the clusters, but know the “rearranged” results, i.e.
do not know what distance is for what cluster.
 Doganay et al. [3] repeated the scheme of Vaidya
and Clifton, but instead of homomorphic cryptosystems
they used secret random pieces. Four particular parties
are used instead of three (two of the parties generate the
rearrangement and two make comparisons). However,
the result of the collusion of just two parties is less
critical than that according to Vaidya and Clifton.
 In order not to have particular parties, Samet et al.
[4] used the cryptographic primitive “Secure Sum”
offered by Clifton and colleagues [7], which also
requires the presence of parties who do not collude
(parties i and i+2). But secure sum is not suitable when
there are only two parties, so Samet et al. offered to use
secure dot product (Secure Dot Product, SDP) [5].
 The protocol offered by Samet [4] does not require
the presence of particular parties, let us take a closer

Middle-East J. Sci. Res., 17 (7): 992-997, 2013

 993

look. For several (more than two) of the parties the
following scheme is used:
 Let us denote the set of attributes that Pi has (the
party number i) as

{ }imiii aaaA ,...,, 21=

 Pi owns the set of attributes for each of the centers
of the clusters

{ }jimjijiji µµµµ ,...,, 21=

 Next, each party sums up the distance between the
corresponding dimensions. Thus, the portion of the
distance between the object and the center of the cluster
µji in party Pi will be as follows (example for the square
Euclidean distance):

() () ()22
22

2
11 ... jimimjiijiiji aaad µµµ −++−+−=

 Having summed up these distances for all of the
parties, we get dj1+dj2+…+djr where r is the number of
the parties. For the center of another cluster µq, we have
the formula dq1+dq2+…+dqr. To determine which of the
clusters (j or q) is closer it is necessary to sum up the
values

∑∑
==

=−
r

i
i

r

i
qiji ddd

11

 If the result is positive, µq

is closer, otherwise µj is
closer. This step is repeated k-1 times to find the
minimal of the distances from the dot to the center of
the cluster.
 This summation is made using Secure Sum
algorithm, offered by Clifton. P1 generates a random
number x, sums it up with d1 and sends to the party P2.
Each subsequent party sums that number up with its d i
and sends further (the last party sends it to the first
one). When the circle is complete, P1 subtracts x from

the sum and gets ∑
=

r

i
id

1

. Then checks 0
1

>∑
=

r

i
id and

sends the result to all.
There are two important points:

1. If there are only two parties, Secure Sum is not

suitable due to the fact that P1 immediately knows
the meaning of d2, simply subtracting from the
received value (x+d1+d2) sent (x+d1).

2. If Pi and Pi+2 collude then they can find the
meaning of di+1 similarly to the case when there are
only two parties.

Fig. 1: The diagram of secure sum algorithm

 Samet et al. offered (but did not describe
the algorithm) to split up di for several random
pieces and sum them up in different routes, so
that the neighbors do not recur. The routes and the
number of pieces can be varied, but there is one
more thing that the Samet et al. did not consider-
with three parties the routes cannot be changed
and when r>3 to disclose information r-1 parties are
enough and with small values of r the possibility of
collusion cannot be neglected. Thus, when there
are few parties another algorithm of summation
should be used.
 For the case with two parties Samet et al. offered to
use the protocol based on secure dot product:

1. P1 randomly selects a nonzero number l1 and

creates the vector 







=

11

1 1
;
ll

d
X and P2 creates the

vector Y = (1; d2).
2. P1 and P2 use secure dot product described by

Malek and Miri [5] and P2 gets the number l2 in the
way l1⋅l2 = d1+d2.

3. P2 sends l2 sign. If l2 = 0 the distance to both
clusters is the same, if l2 ≠ 0, l2 sign shows the
cluster the distance to which is less.

 In the offered protocol the vector length of X and
Y equals two and as it will be shown later, it leads to
the disclosure of the data of P1.
 Thus, the algorithm [4] has two drawbacks that are
mandatory for elimination:

1) When r = 2 the data of one of the parties will be

disclosed;
2) When r is small the collusion of parties r -1 is

possible.

Middle-East J. Sci. Res., 17 (7): 992-997, 2013

 994

Fig. 2: The example of SDP for three parties

 One possible solution for the case when there are
few parties is to use the same secure dot product. This
requires from the party to have a session of SDP with
every party. The example for three parties is shown in
Fig. 2.
 The main drawback of the algorithm is that the
amount of data transmitted over the network increases
in proportion to the square of the number of parties.
Because of it this algorithm is not suitable for clustering
with a large number of parties because it is used in
every iteration for every object of the data k-1 times.
 Thus, when the number of parties is small the use
of SDP is obligatory, as it guarantees the absence of the
disclosure of these parties’ data. When the number of
parties is large one still cannot give up secure sum, as it
works much faster due to the smaller amount of
interactions between the parties. However, one should
also improve the protocol of secure sum to avoid any
disclosure of information in case of the collusion of a
small number of parties.
 Main part. For a small number of parties existing
solutions do not guarantee the preservation of privacy
in case of collusion between several parties. It is
necessary to develop or choose from the existing ones
such a primitive that would ensure privacy even in case
of collusion of all the parties, except one and would not
disclose any party’s data.
 Samet et al. for two parties use secure dot product:
suppose two parties (let us call them Alice and Bob)
each has an n-dimensional vector: Alice has

{ }nxxxx ,...,, 21=
and Bob has

{ }nyyyy ,...,, 21=

 Each dimension is a finite field Fp and the vector
space is the final n-dimensional extension n

pF of the

finite field Fp.
 Alice and Bob want to count x y⋅ keeping privacy.
The result of the protocol should be known only to

Alice. The input data of each of the parties do
not have to be disclosed. Alice and Bob perform the
following protocol:

1) Alice randomly selects the vector n

pFϕ ∈ and

a,b,c,d∈Fp, (ad-bc)-1 ≠ 0. Alice computes the
following vectors:

ϕbxau +=

ϕdxcv +=

2) Then Alice sends the vectors u and v to Bob.

Knowing his vector y , Bob computes y u⋅ and
u y⋅ . Then Bob sends the results back to Alice.

3) Alice computes () ()()vybuydbcad ⋅−⋅− −1)(that is
equivalent to x y⋅ .

 Samet et al. used SDP to find the nearest cluster.

Alice and Bob create vectors (1;d2) and









11

1 1
;
ll

d

 where
l1 is a random number generated by Bob. At the output
Alice gets l2 so that l1⋅l2 = d1+d2. Then, to determine the
sign of the sum d1+d2 the numbers l1 and l2 are
multiplied.
 It is necessary to note two things. First, the
primitive of Malek and Miri is made for finite fields.
Thus, one should not use the signs of numbers l1 and l2
for the reliable determination of the sign of the sum
d1+d2 after using the primitive.
 The example that proves this statement. There is a
finite field {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}, d1 = -1,
d2=-2. Suppose l1 = 2. Then, after using secure dot
product l2 = 4 is obtained as in this finite field
2⋅4 = -1-2. The signs of the numbers l1 and l2 are
both positive and the sign of the sum is negative-the
protocol does not always work correctly in finite
fields. Also, the use of finite fields decreases the
accuracy of the analysis, since it is necessary to
“impose” the range of permissible values on a finite
field, which produces the quantization error. The
solution is to use a set of real numbers instead of
finite fields.
 Second, the analysis of the primitive showed that
the use of two-dimensional vectors (1; d2) and










11

1 1
;
ll

d

discloses Bob's data to Alice. The reason is in
step 2 of the primitive when Bob sends Alice the results
of dot products y u⋅ and y v⋅ . Alice gets two equations
with two unknowns:

Middle-East J. Sci. Res., 17 (7): 992-997, 2013

 995

uyuyuy ⋅=+ 2211

vyvyvy ⋅=+ 2211

 Vectors u and v are known to Alice already
and the results of dot products y u⋅ and y v⋅ she got
from Bob. Having solved the equations, Alice
computes d1/l1 and 1/l1 and gets d1. Bob's data
becomes known to Alice.
 This problem can be solved by splitting two

dimensions of the vectors (1; d2) and









11

1 1
;
ll

d

 into
three. After splitting the vectors look as follows:

• The vector of Alice (1;1; d2),

• The vector of Bob







 −+

111

1 1
;;
ll

z
l

zd

where z is a random number generated by Bob. The dot
product of the vectors will remain the same, but now in

two equations there will be three unknowns 1

1

l
zd +

, -z/l1
and 1/l1, from which “curious” Alice will not in the
general case get the value d1 of Bob. But in certain
parameters of the vectors u and v the disclosure of
data is still possible, so Bob should check the vectors u
and v sent from Alice for the following conditions
(which can be performed separately but not
simultaneously):

1 2 1 2u u , v v= +

 If both of these conditions of the equations are

fulfilled one can find





 −++

11

1

l
z

l
zd

 and 1/l1 separately
and so get

11
11

1 dl
l
z

l
zd =⋅












 −++

 Having eliminated unsatisfactory features, one can
start using secure dot product to determine the closest
cluster. However, when there is a large number of a
parties and / or data object, it leads to a large volume of
traffic. Therefore, the use of SDP is recommended for a
small amount of data objects or parties when there is a
risk of collusion and providing privacy to the detriment
of the speed of the algorithm.

Table 1: The dependence of the maximal possible number of parties

in collusion from the total number of parties

 The possible number

r N n of parties in collusion

3 1 1 1

4 1 1 1

5 1,2 2 3

6 1 1 1

7 1,2,3 3 5

8 1,3 2 3

9 1,2,4 3 5

10 1,3 2 3

11 1,2,3,4,5 5 9

12 1,5 2 3

13 1,2,3,4,5,6 6 11

14 1,3,5 3 5

 With a large amount of data when the volume of
traffic is important, it is necessary to provide a smaller
amount of data transfers. One can apply the improved
algorithm of secure sum.
 When using the original secure sum offered by
Clifton et al. [7] private information of any party
(except the first one) may be disclosed by its neighbors
through the protocol if they collude with each other.
The solution of the problem is “The modified ck-
secure sum” [8] where the data of every party is splitted
into k random pieces, there is k of summation rounds,
in every of which neighbors are rearranged. It is
guaranteed that no two parties having colluded will get
the data of the party between them. Now, however, may
be not only two, but just three parties who colluded to
disclose confidential information are enough. Also in
this protocol the data is divided into segments that
increase the cost of communication.
 The existing modernizations of “secure sum”
(before “Modified ck- secure sum” there were protocols
[9, 10]), do not have a special advantage in speed
comparing to dot product as they split the data into the
number of pieces equal to the number of parties and
also do not preserve privacy even with three parties
who are in collusion. The algorithm is required that
allows to split the data into minimal number of pieces
so as to protect the privacy for the specified maximal
number of parties in collusion.

Theorem: Suppose, the number of participants is r.
Then we define the family of operations +N in a set
{1,2,…,r}, so that any element of Zr\{0} after r usages
of the operation of the family +N will return into itself.
To do this, all the factors of the number N should
be mutually simple with all the factors of the
number r (or N = 1).

Middle-East J. Sci. Res., 17 (7): 992-997, 2013

 996

Fig. 3: The dependence of the maximal possible amount of parties in collusion from the total number of parties

Fig. 4: The dependence of the number of bytes transferred in a single operation of comparing distances from the

number of parties

 If we take the operations of this family, when
N<r/2 it is possible to create the routes of summation in
such a way that every time there will be different
neighbors. Let us denote the number of such operations
from +N as n. Then the maximal possible number of
parties in collusion that will still provide privacy equals
n⋅2-1. With simple N the possible number of parties in
collusion is maximal and equals N-2 (Table 1).
 For 5 and starting from 7 parties, the offered
algorithm allows more parties in collusion than the
algorithms that existed earlier.
 This modification allows to change the neighbors
according to the algorithm and to maintain privacy even
for some, though not very large, number of parties in
collusion. The maximal amount of those in collusion
depends on how many operations from the family +N
can be chosen.
 It is also not necessary to use all the possible
routes, if the model of the adversary will include fewer

parties in collusion than the possible maximum, so one
can split the data into fewer pieces and, accordingly,
sum up in fewer routes, which will reduce the amount
of network traffic.
 The developed modernized algorithm of secure
sum allows to reduce the amount of the transferred data
both compared to SDP and in comparison with the
analogues. In this case, the algorithm ensures the
preservation of privacy with more parties in collusion
than for the similar ones. However, for few parties (in
particular, for 2, 3, 4 and 6) it is still recommended to
use SDP.
 Figure 3 and 4 present the graphs of dependence of
the possible maximal number of parties in collusion and
the bytes transferred during a single operation of
comparison of distances from the total number of
parties. We considered that in every package beside
useful information the network protocol headers were
present (Ethernet, IP, UDP) [11].

Middle-East J. Sci. Res., 17 (7): 992-997, 2013

 997

 The function of the traffic with SDP grows faster
than the function of possible parties in collusion. As the
number of bytes transferred in SDP is more than in the
improved secure sum and the traffic with a lot of parties
can be several tens of gigabytes, secure sum is more
preferable in use with a lot of parties or objects. One
should consider that k-means, as a rule, should be
started several times with different numbers of clusters,
so the traffic will increase many-fold. When using this
protocol, one should define the expected volume of
traffic and the number of possible parties in collusion
and on the basis of these parameters select a
cryptographic primitive underlying the work of the
protocol.

CONCLUSION

 The result of the study is the protocol preserving
privacy in multiparty k-means clustering for vertical
partitioning and the given model of the adversary. The
analysis of the protocol showed its advantages over
similar protocols. The correct use of the cryptographic
primitive “Secure Dot Product” in the protocol
guarantees privacy even with the collusion of all the
parties against one. With a large number of parties of
cluster analysis instead of "Secure Dot Product "the
modernized during this work primitive “Secure Sum” is
used, which unlike the original “Secure Sum” and other
versions of the primitive guarantees privacy with a
large number of parties in collusion.

ACKNOWLEDGMENTS

 This work was supported by the grant
MK- 473.2013.9 of the President to young PhD.

REFERENCES

1. Hartigan, J. and M. Wong, 1979. Algorithm AS

136: A K-Means Clustering Algorithm. Journal of
the Royal Statistical Society. Applied Statistics,
28 (1): 100-108.

2. Vaidya, J. and C. Clifton, 2003. Privacy-Preserving
K-Means Clustering Over Vertically Partitioned
Data. In the Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge discovery
and Data Mining. Washington, USA, pp: 206-215.

3. Doganay, M., T. Pederson, Y. Saygin, E. Savas and

A. Levi, 2008. Distributed Privacy Preserving
Clustering with Additive Secret Sharing. In the
Proceedings of the 2008 International Workshop
on Privacy and Anonymity in Information Society,
pp: 6003-6011.

4. Samet, S., A. Miri and L. Orozco-Barbosa,
2007. Privacy-Preserving K-Means Clustering in
Multi-Party Environment. In the Proceedings of
the 2007 International Conference on Security
and Cryptography, Barcelona, Spain, pp: 381-385.

5. Malek, B. and A. Miri, 2006. Secure dot-product
protocol using trace functions. In the Proceedings
of the 2006 IEEE International Symposium on
Information Theory, pp: 927-931.

6. Du, W. and M. Atallah, 2001. Privacy-Preserving
Cooperative Statistical Analysis. In the
Proceedings of 17th Annual Computer Security
Applications Conference, USA, pp: 102-110.

7. Clifton, C., M. Kantarcioglu, J. Vaidya, X. Lin and
M. Zhu, 2002. Tools for privacy preserving data
mining. SIGKDD Explorations, 4 (2): 28-34.

8. Sheikh, R., B. Kumar and D. Mishra, 2010. A
Modified ck-Secure Sum Protocol for Multi-Party
Computation. Journal of Computing, 2: 62-66.

9. Sheikh, R., B. Kumar and D. Mishra, 2009.
Privacy-Preserving k-Secure Sum Protocol.
International Journal of Computer Science and
Information Security, 6: 184-188.

10. Sheikh, R., B. Kumar and D. Mishra, 2010.
Changing Neighbors k-Secure Sum Protocol for
Secure Multi-Party Computation. International
Journal of Computer Science and Information
Security, 7: 239-243.

11. Zhukov, V. and A. Vashkevich, 2013. Privacy-
preserving Clustering in Vertical Partitioning.
Proceedings of the 13th International Scientific
Conference “Information Security”, Taganrog,
Russia, pp: 191-198.

