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Abstract: The article examines and analyzes existing solutions of privacy-preserving computations over 
vertical partitioning in multiparty clustering by k-means. The modifications of cryptographic primitives to 
eliminate detected deficiencies are offered. The results of comparative analysis of advanced cryptographic 
primitives are given. The protocol is developed that preserves data privacy with few parties considering 
their possible collusion. The conclusions on the effectiveness of the improved cryptographic primitives are 
made and the recommendations how to use the developed protocol are given. 
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INTRODUCTION 

 
 With vertically partitioned data in multiparty 
clustering of k-means (a description of the algorithm 
can be found in the work of Hartigan and Wong) [1] 
each party has a set of attributes for every object 
(parties have different data columns). The centers of the 
clusters are randomly generated and are not private. 
Protected are such steps of k-means as the calculation 
of distances from an object to centers, the choice of the 
minimal distance and also checking the conditions of 
stopping. 
To preserve privacy two approaches are offered: 
 
1. First, between the “particular” parties the distance 

is distributed from the object to all the clusters, 
they find the shortest distance. However, they 
know the distance from the object to the clusters in 
a rearranged order. Next they report the 
“rearranged” number of the shortest distance to the 
party who knows the rearrangement and it sends 
out the real number of the smallest distance. In the 
algorithm special parties are required who conduct 
additional operations and must not collude with 
each other [2, 3]. 

2. All the parties do not summarize the distance from 
the object to the clusters; they summarize the 
difference between the distances from the object to 
the clusters. Therefore, after the summation it is 
sufficient to determine if the difference is more 
than zero or not, to calculate the sum is not 
necessary. The algorithm does not have particular 
parties [4, 5]. 

 In all the algorithms the collusion of several 
(depending on the algorithm) parties creates the 
problem of security: the data of the victims of collusion, 
in some degree, will be disclosed. Thus, the aim of this 
work is to improve the protocol of preserving data 
privacy for vertical partitioning. 
 
The analysis of existing solutions: In the solution of 
Vaidya and Clifton [2] the permutation algorithm 
offered by Du and Attala [6] was used to find the 
nearest cluster and homomorphic encryption was used 
to get the distances to the cluster. The protocol requires 
three particular parties. One of them knows the 
permutation, the other two know the results of 
comparing the distances between the dot and the centers 
of the clusters, but know the “rearranged” results, i.e. 
do not know what distance is for what cluster. 
 Doganay et al. [3] repeated the scheme of Vaidya 
and Clifton, but instead of homomorphic cryptosystems 
they used secret random pieces. Four particular parties 
are used instead of three (two of the parties generate the 
rearrangement and two make comparisons). However, 
the result of the collusion of just two parties is less 
critical than that according to Vaidya and Clifton. 
 In order not to have particular parties, Samet et al. 
[4] used the cryptographic primitive “Secure Sum” 
offered by Clifton and colleagues [7], which also 
requires the presence of parties who do not collude 
(parties i and i+2). But secure sum is not suitable when 
there are only two parties, so Samet et al. offered to use 
secure dot product (Secure Dot Product, SDP) [5]. 
 The protocol offered by Samet [4] does not require 
the  presence  of  particular  parties,  let  us take  a closer 
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look. For several (more than two) of the parties the 
following scheme is used: 
 Let us denote the set of attributes that Pi has (the 
party number i) as  
 

{ }imiii aaaA ,...,, 21=  
 
 Pi owns the set of attributes for each of the centers 
of the clusters 
 

{ }jimjijiji µµµµ ,...,, 21=  
 
 Next, each party sums up the distance between the 
corresponding dimensions. Thus, the portion of the 
distance between the object and the center of the cluster 
µji in party Pi will be as follows (example for the square 
Euclidean distance): 
 

( ) ( ) ( )22
22

2
11 ... jimimjiijiiji aaad µµµ −++−+−=  

 
 Having summed up these distances for all of the 
parties, we get dj1+dj2+…+djr where r is the number of 
the parties. For the center of another cluster µq, we have 
the formula dq1+dq2+…+dqr. To determine which of the 
clusters (j or q) is closer it is necessary to sum up the 
values  
 

∑∑
==

=−
r

i
i

r

i
qiji ddd

11  

 
 If the result is positive, µq 

is closer, otherwise µj is 
closer. This step is repeated k-1 times to find the 
minimal of the distances from the dot to the center of 
the cluster. 
 This summation is made using Secure Sum 
algorithm, offered by Clifton. P1 generates a random 
number x, sums it up with d1 and sends to the party P2. 
Each subsequent party sums that number up with its d i 
and sends further (the last party sends it to the first 
one). When the circle is complete, P1 subtracts x from 

the sum and gets ∑
=

r

i
id

1

. Then checks 0
1

>∑
=

r

i
id  and 

sends the result to all. 
There are two important points: 
 
1. If there are only two parties, Secure Sum is not 

suitable due to the fact that P1 immediately knows 
the meaning of d2, simply subtracting from the 
received value (x+d1+d2) sent (x+d1).  

2. If Pi and Pi+2 collude then they can find the 
meaning of di+1 similarly to the case when there are 
only two parties. 

 

 
 
Fig. 1: The diagram of secure sum algorithm 
 
 Samet   et   al.   offered   (but  did  not  describe  
the  algorithm)  to  split  up  di for several random 
pieces   and   sum  them  up  in  different  routes,  so  
that the neighbors do not recur. The routes and the 
number  of  pieces  can  be  varied, but there is one 
more  thing  that  the  Samet  et  al. did not consider-
with   three   parties  the  routes  cannot  be  changed  
and when r>3 to disclose information r-1 parties are 
enough and with small values of r the possibility of 
collusion   cannot   be  neglected.  Thus,  when  there  
are  few  parties  another  algorithm  of  summation 
should be used. 
 For the case with two parties Samet et al. offered to 
use the protocol based on secure dot product: 
 
1. P1 randomly selects a nonzero number l1 and 

creates the vector 







=

11

1 1
;
ll

d
X  and P2 creates the 

vector Y = (1; d2). 
2. P1 and P2 use secure dot product described by 

Malek and Miri [5] and P2 gets the number l2 in the 
way l1⋅l2 = d1+d2. 

3. P2 sends l2 sign. If l2 = 0 the distance to both 
clusters is the same, if l2 ≠ 0, l2 sign shows the 
cluster the distance to which is less. 

 
 In the offered protocol the vector length of X and 
Y equals two and as it will be shown later, it leads to 
the disclosure of the data of P1. 
 Thus, the algorithm [4] has two drawbacks that are 
mandatory for elimination: 
 
1) When r = 2 the data of one of the parties will be 

disclosed; 
2) When r is small the collusion of parties r -1 is 

possible. 
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Fig. 2: The example of SDP for three parties 
 
 One possible solution for the case when there are 
few parties is to use the same secure dot product. This 
requires from the party to have a session of SDP with 
every party. The example for three parties is shown in 
Fig. 2. 
 The main drawback of the algorithm is that the 
amount of data transmitted over the network increases 
in proportion to the square of the number of parties. 
Because of it this  algorithm is not suitable for clustering 
with a large number of parties because it is used in 
every iteration for every object of the data k-1 times. 
 Thus, when the number of parties is small the use 
of SDP is obligatory, as it guarantees the absence of the 
disclosure of these parties’ data. When the number of 
parties is large one still cannot give up secure sum, as it 
works much faster due to the smaller amount of 
interactions between the parties. However, one should 
also improve the protocol of secure sum to avoid any 
disclosure of information in case of the collusion of a 
small number of parties. 
 Main part. For a small number of parties existing 
solutions do not guarantee the preservation of privacy 
in case of collusion between several parties. It is 
necessary to develop or choose from the existing ones 
such a primitive that would ensure privacy even in case 
of collusion of all the parties, except one and would not 
disclose any party’s data. 
 Samet et al. for two parties use secure dot product: 
suppose two parties (let us call them Alice and Bob) 
each has an n-dimensional vector: Alice has  
 

{ }nxxxx ,...,, 21=  
and Bob has  

{ }nyyyy ,...,, 21=  
 
 Each dimension is a finite field Fp and the vector 
space is the final n-dimensional extension n

pF of the 

finite field Fp. 
 Alice and Bob want to count x y⋅  keeping privacy. 
The  result  of  the  protocol  should  be  known  only to  

 
Alice.  The   input   data  of  each  of  the  parties  do  
not have to be disclosed. Alice and Bob perform the 
following protocol: 
 
1) Alice randomly selects the vector n

pFϕ ∈  and 

a,b,c,d∈Fp, (ad-bc)-1 ≠ 0. Alice computes the 
following vectors: 

 
ϕbxau +=  

 
ϕdxcv +=  

 
2) Then Alice sends the vectors u  and v  to Bob. 

Knowing his vector y , Bob computes y u⋅  and 
u y⋅ . Then Bob sends the results back to Alice. 

3) Alice computes ( ) ( )( )vybuydbcad ⋅−⋅− −1)(  that is 
equivalent to x y⋅ . 

 
 Samet et al. used SDP to find the nearest cluster. 

Alice and Bob create vectors (1;d2) and 









11

1 1
;
ll

d

 where 
l1 is a random number generated by Bob. At the output 
Alice gets l2 so that l1⋅l2 = d1+d2. Then, to determine the 
sign of the sum d1+d2 the numbers l1 and  l2 are 
multiplied. 
 It is  necessary to note two things. First, the 
primitive of Malek and Miri is made for finite fields. 
Thus, one should not use the signs of numbers l1 and l2 
for the reliable determination of the sign of the sum 
d1+d2 after using the primitive. 
 The example that proves this statement. There is a 
finite field {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}, d1 = -1, 
d2=-2. Suppose l1 = 2. Then, after using secure dot 
product  l2  =  4  is  obtained  as  in  this   finite  field  
2⋅4  =  -1-2. The  signs  of  the  numbers  l1  and  l2  are 
both positive and the sign of the sum is negative-the 
protocol  does  not  always  work  correctly  in finite 
fields. Also, the use of finite fields decreases the 
accuracy of the analysis, since it is necessary to 
“impose” the range of permissible values on a finite 
field, which produces the quantization error. The 
solution  is  to  use  a  set  of  real  numbers  instead  of 
finite fields. 
 Second, the analysis of the primitive showed that 
the use of two-dimensional vectors (1; d2) and 










11

1 1
;
ll

d

discloses Bob's data to Alice. The reason is in 
step 2 of the primitive when Bob sends Alice the results 
of dot products y u⋅  and y v⋅ . Alice gets two equations 
with two unknowns: 
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uyuyuy ⋅=+ 2211  

 
vyvyvy ⋅=+ 2211  

 
 Vectors  u   and  v   are  known  to  Alice  already 
and the results of dot products y u⋅  and y v⋅  she got 
from Bob. Having  solved  the  equations, Alice 
computes d1/l1  and 1/l1  and  gets d1. Bob's  data  
becomes  known  to  Alice. 
 This problem can be solved by splitting two 

dimensions of the vectors (1; d2) and 









11

1 1
;
ll

d

 into 
three. After splitting the vectors look as follows: 
 
• The vector of Alice (1;1; d2), 

• The vector of Bob 







 −+

111

1 1
;;
ll

z
l

zd

 
 
where z is a random number generated by Bob. The dot 
product of the vectors will remain the same, but now in 

two equations there will be three unknowns 1

1

l
zd +

, -z/l1 
and 1/l1, from which “curious” Alice will not in the 
general case get the value d1 of Bob. But in certain 
parameters of the vectors u  and v  the disclosure of 
data is still possible, so Bob should check the vectors u  
and v  sent from Alice for the following conditions 
(which can be performed separately but not 
simultaneously): 
 

1 2 1 2u u , v v= +  

 
 If both of these conditions of the equations are 

fulfilled one can find 





 −++

11

1

l
z

l
zd

 and 1/l1 separately 
and so get  
 

11
11

1 dl
l
z

l
zd =⋅












 −++

 
 
 Having eliminated unsatisfactory features, one can 
start using secure dot product to determine the closest 
cluster. However, when there is a large number of a 
parties and / or data object, it leads to a large volume of 
traffic. Therefore, the use of SDP is recommended for a 
small amount of data objects or parties when there is a 
risk of collusion and providing privacy to the detriment 
of the speed of the algorithm. 

 
Table 1: The dependence of the maximal possible number of parties 

in collusion from the total number of parties 

   The possible number 

r N n of parties in collusion 

3 1 1 1 

4 1 1 1 

5 1,2 2 3 

6 1 1 1 

7 1,2,3 3 5 

8 1,3 2 3 

9 1,2,4 3 5 

10 1,3 2 3 

11 1,2,3,4,5 5 9 

12 1,5 2 3 

13 1,2,3,4,5,6 6 11 

14 1,3,5 3 5 

 
 With a large amount of data when the volume of 
traffic is important, it is necessary to provide a smaller 
amount of data transfers. One can apply the improved 
algorithm of secure sum. 
 When using the original secure sum offered by 
Clifton et al. [7] private information of any party 
(except the first one) may be disclosed by its neighbors 
through the protocol if they collude with each other. 
The solution of the problem is “The modified ck- 
secure sum” [8] where the data of every party is splitted 
into k random pieces, there is k of summation rounds, 
in every of which neighbors are rearranged. It is 
guaranteed that no two parties having colluded will get 
the data of the party between them. Now, however, may 
be not only two, but just three parties who colluded to 
disclose confidential information are enough. Also in 
this protocol the data is divided into segments that 
increase the cost of communication. 
 The existing modernizations of “secure sum” 
(before “Modified ck- secure sum” there were protocols 
[9, 10]), do not have a special advantage in speed 
comparing to dot product as they split the data into the 
number of pieces equal to the number of parties and 
also do not preserve privacy even with three parties 
who are in collusion. The algorithm is required that 
allows to split the data into minimal number of pieces 
so as to protect the privacy for the specified maximal 
number of parties in collusion. 
 
Theorem: Suppose, the number of participants is r. 
Then we define the family of operations +N in a set 
{1,2,…,r}, so that any element of Zr\{0} after r usages 
of the operation of the family +N will return into itself. 
To  do this,  all  the  factors  of  the  number  N  should 
be  mutually  simple  with  all  the  factors  of  the 
number r (or N = 1). 
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Fig. 3: The dependence of the maximal possible amount of parties in collusion from the total number of parties 
 

 
 
Fig. 4: The dependence of the number of bytes transferred in a single operation of comparing distances from the 

number of parties 
 
 If we take the operations of this family, when 
N<r/2 it is possible to create the routes of summation in 
such a way that every time there will be different 
neighbors. Let us denote the number of such operations 
from +N as n. Then the maximal possible number of 
parties in collusion that will still provide privacy equals 
n⋅2-1. With simple N the possible number of parties in 
collusion is maximal and equals N-2 (Table 1). 
 For 5 and starting from 7 parties, the offered 
algorithm allows more parties in collusion than the 
algorithms that existed earlier. 
 This modification allows to change the neighbors 
according to the algorithm and to maintain privacy even 
for some, though not very large, number of parties in 
collusion. The maximal amount of those in collusion 
depends on how many operations from the family +N 
can be chosen. 
 It is also not necessary to use all the possible 
routes, if the model of the adversary will include fewer 

parties in collusion than the possible maximum, so one 
can split the data into fewer pieces and, accordingly, 
sum up in fewer routes, which will reduce the amount 
of network traffic. 
 The developed modernized algorithm of secure 
sum allows to reduce the amount of the transferred data 
both compared to SDP and in comparison with the 
analogues. In this case, the algorithm ensures the 
preservation of privacy with more parties in collusion 
than for the similar ones. However, for few parties (in 
particular, for 2, 3, 4 and 6) it is still recommended to 
use SDP. 
 Figure 3 and 4 present the graphs of dependence of 
the possible maximal number of parties in collusion and 
the bytes transferred during a single operation of 
comparison of distances from the total number of 
parties. We considered that in every package beside 
useful information the network protocol headers were 
present (Ethernet, IP, UDP) [11]. 
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 The function of the traffic with SDP grows faster 
than the function of possible parties in collusion. As the 
number of bytes transferred in SDP is more than in the 
improved secure sum and the traffic with a lot of parties 
can be several tens of gigabytes, secure sum is more 
preferable in use with a lot of parties or objects. One 
should consider that k-means, as a rule, should be 
started several times with different numbers of clusters, 
so the traffic will increase many-fold. When using this 
protocol, one should define the expected volume of 
traffic and the number of possible parties in collusion 
and on the basis of these parameters select a 
cryptographic primitive underlying the work of the 
protocol. 
 

CONCLUSION 
 
 The result of the study is the protocol preserving 
privacy in multiparty k-means clustering for vertical 
partitioning and the given model of the adversary. The 
analysis of the protocol showed its advantages over 
similar protocols. The correct use of the cryptographic 
primitive “Secure Dot Product” in the protocol 
guarantees privacy even with the collusion of all the 
parties against one. With a large number of parties of 
cluster analysis instead of "Secure Dot Product "the 
modernized during this work primitive “Secure Sum” is 
used, which unlike the original “Secure Sum” and other 
versions of the primitive guarantees privacy with a 
large number of parties in collusion. 
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