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Abstract: Often parameters in hydrologic models cannot be measured directly and can only be inferred by a
calibration process. This work addresses the application and comparison of three parameter uncertainty
methods and their effects on the prediction of streamflow in Qezel Ozan watershed (43,000 km ) located in2

northwestern Iran. Methods of Partcle Swarm Optimization (PSO), DiffeRential Evolution Adaptive Metropolis
(DREAM) and Sequential Uncertainty Fitting ver. 2 (SUFI2) were used in this study to calibrate a rainfall-runoff
model created using the Soil and Water Assessment Tool (SWAT). The calibration and validation results
indicated statistically insignificant differences among the three algorithms. The main difference was in their
number of runs, where DREAM converged after 36000 runs, PSO after 6000 runs and SUFI2 after 1500 runs.
SUFI2 proved to be a very efficient optimization algorithm, while PSO had the largest NS for calibration (0.59)
and validation (0.74) periods.

Key words: Uncertainty  analysis   SWAT  Differential Evolution Adaptive Metropolis algorithm  PSO
 SUFI2

INTRODUCTION activities in the watershed and model inaccuracy due to

Rainfall-runoff models are widely used in Hydrology model. Parameter uncertainties arise due to a large number
to simulate river basin water quality and quantity and play of unknown parameters in distributed models.
an important role in management of water resources. Furthermore, errors may come from the imprecise
Hydrologic models such as HSPF (Hydrological measured data used for calibration [6].
simulation program- FORTRAN) [1], SHETRAN [2] and Different calibration-uncertainty analysis techniques
SWAT (Soil and Water Assessment Tool) [3] require have different levels of mathematical complexity and data
many parameters that cannot be measured directly and requirements. Topliceanu [7] classified them into two main
must only be estimated by calibration against a historical categories: analytical approaches and approximation
record of measured output data. Due to the problem of approaches. The selection of an appropriate technique to
non-uniqueness the uncertainty in the model prediction be used depends on the nature of the problem including
must also be estimated [4]. The major sources of availability of information, resources constraints, model
uncertainty are input data, model structure and model complexity and type and accuracy of desired results. As
parameters [5]. Input uncertainty is often related to most of the models used in hydrology are nonlinear and
imprecise  or  spatially interpolated measurements of highly complex, the analytical techniques do not apply
model input and lack of knowledge of initial conditions. because they are rather restrictive in practical
Sources of model structural uncertainty include processes applications. Yang et al. [6] divided calibration techniques
not accounted for in the model such as unknown into three main categories: (i) approaches without

over-simplification of the processes considered in the
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rigorous statistical assumptions such as GLUE [8] and
SUFI2 [9, 10] (ii) approaches that account for the effect of
input errors on the output by an additive error model
which introduces temporal correlation of the residuals like
autoregressive error models [11,12] and (iii) methods that
use improved likelihood functions that explicitly represent
input errors and/or model structural error of the
underlying hydrological model [6].

Despite the large number of suggested techniques,
only a few papers on comparison of different uncertainty
analysis techniques are available [6,13,14]. Yang et al. [6]
compared GLUE, parameter Solution (ParaSol) [15], SUFI2
[10] and MCMC [4,12,16,17] methods in an application to
a watershed in China with SWAT model and found that
different methods converge to different solutions with
more or less the same calibration and validation results.
Zhang et al [18] also compared five global optimization
algorithms (genetic algorithms, shuffled complex
evolution, particle swarm optimization, differential
evolution and artificial immune system) and showed that
particle swarm optimization (PSO) can obtain better
parameter solutions than other algorithms given fewer
number of model runs (less than 2000).

In this paper we apply a relatively new MCMC Fig. 1: Location of study site as well hydrometric stations,
procedure entitled DiffeRential Evolution Adaptive rain and temperature stations
Metropolis (DREAM) [19]. We applied DREAM to a
rainfall-runoff model built using SWAT and compare the daily discharge for over a 30-years period (1975-2004) at
results with PSO [20] and SUFI2, where the latter is the basin outlet is 60 m s  and varies irregularly between
reported by Yang et al. [6] to need a smaller number of 790 m  s  during flood season to 17 m  s  in the dry
model runs in comparison with other methods. As Yang season. Grassland covers more than 85% of the area.
et al. [6] explained there are various difficulties in Figure 1 shows the location of the watershed along with
comparing uncertainty analysis techniques. In this paper, temperature gauge, rain gauge and discharge stations. 
we compare the final calibration and validation statistics
(e.g. R , NS, MSE) and the uncertainty statistics Hydrological Model (SWAT): The Soil and Water2

suggested  by   Abbaspour   et   al.   (2004,  2007) [9,10] Assessment Tool (SWAT) [3] was used in the current
(e.g. R-factor and P-factor), which compare the study. We chose SWAT because of its availability and
observation signal with the 95% prediction uncertainty user-friendliness in handling input data. Swat is
band. continuous time, spatially distributed simulator of water,

MATERIALS AND METHODS catchment scale. In SWAT, a watershed is divided into a

Description of the Study Area: This study was conducted model (DEM) and then a sub-basin is allowed to be
in a section of Qezel Ozan watershed (Fig 1) with a divided into a number of unique hydrologic response
drainage area of 43000 km  located in northwestern Iran. units (HRU) based on variability in soil, slope and land2

The river originates from the mountains of Kurdistan use characteristics.
(from South to north) and discharges to the Caspian Sea. The hydrologic model is based on the water balance
The average annual precipitation, average daily minimum for the four storage volumes snow, soil profile (0-2 m),
and  maximum  temperatures  respectively are  319  mm, shallow aquifer (2-20 m) and deep aquifer (>20 m). The
5.5°C and 20.5 °C. According to De Martonne formula this simulated processes include surface runoff, infiltration,
region has a climate zone  of  arid  to  semi-arid.  Average evaporation,   plant    water    uptake,   lateral   flow   and

3 1

3 1 3 1

sediment, nutrients and pesticides transport at a

number of sub-basins based on given digital elevation
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Table 1: The 9 most sensitive parameters for uncertainty analysis and their initial ranges
1Initial range
------------------------------------------------

Aggregate parameters Description Min Max
r__SOL_BD(1).sol Soil bulk density (g cm ) -0.8 0.83

r__SOL_AWC(1).sol Soil available water storage capacity (mm H O/mm soil) -0.9 0.92

v__ALPHA_BNK.rte Base flow alpha factor for bank storage (days) 0 1
v__CH_K2.rte Effective hydraulic conductivity in the main channel (mm h ) 0 1501

v__CH_N2.rte Manning's n value for main channel 0 0.3
v__ESCO.hru Soil evaporation compensation factor 0.01 1
r__CN2.mgt SCS runoff curve number for moisture condition II -0.7 0.7
r__HRU_SLP.hru Average slope steepness (m/m) -0.8 0.8
v__CANMX.hru Maximum canopy index 0 100

percolation to shallow and deep aquifers. Depending on successfully have applied it as a search engine to optimize
data availability, the potential evapotranspiration (PET) parameters of the models [24-26]. PSO shares many
can be computed using different methods. In this study, similarities with evolutionary computation techniques
potential evapotranspiration (PET) was simulated using such as Genetic Algorithms (GA). The basic PSO
the Hargreaves method [21] Based on the PET and algorithm consists of three steps: (i) generate the
additional soil and landuse parameters, the actual plant positions of particles (coordinate in the parameter space)
transpiration and the actual soil evaporation are estimated and their velocities (‘flying’ direction and speed); (ii)
separately. The surface runoff from daily rainfall amounts update the velocity of each particle using the information
is modelled using a modification of the SCS curve number from the best solution it has achieved so far (personal
method [22] taking into account landuse, soil type and best) and another solution with the best fitness value that
antecedent soil moisture. Based on the literature and one has been obtained so far by all the particles in the
factor-at-a-time sensitivity analysis we selected 9 population (global best); (iii) finally, the new position of
parameters for model calibration (Table 1). each particle is calculated by adding the updated velocity

SUFI2 Procedure: SUFI2 [10] is a tool for sensitivity
analysis, multi-site calibration and uncertainty  analysis. Markov chain Monte Carlo (MCMC): We took advantage
It is capable of analyzing a large number of parameters of a novel Markov chain Monte Carlo (MCMC) sampler,
and measured data from many gauging stations entitled differential evolution adaptive Metropolis
simultaneously. In SUFI-2, parameter uncertainty is (DREAM). This approach is known as the latest MCMC
described by a multivariate uniform distribution in a schemes developed by Vrugt et al. [19] and is applicable
parameter hypercube, while the output uncertainty is to complex, multi-modal, search problems and on a wide
quantified by 95PPU calculated at the 2.5% and 97.5% range of model calibration and uncertainty studies to
levels of the cumulative distribution function of the estimate optimal parameter values and their underlying
output variables. Latin hypercube sampling is used to posterior probability density function [27-31]. Vrugt et al.
draw independent parameter sets [10] SUFI2 is linked to [19] showed that DREAM works really well as compared
SWAT (in the SWAT-CUP software; Abbaspour, 2011) to the other existing MCMC schemes.
[23] through an interface that also includes the programs The DREAM sampling scheme in fact is an adaptation
Generalized Likelihood Uncertainty Estimation (GLUE) [8], of the Shuffled Complex Evolution Metropolis (SCEM-
PSO, Parameter Solution (ParaSol) [15] and a Monte Carlo UA) global optimisation algorithm [17]. 
Markov Chain (MCMC) [17] algorithm. A full detailed In the DREAM algorithm differential evolution as a
description of SUFI2 is presented by Abbaspour  et  al. genetic algorithm is used for population evolution. Within
[9, 10]. this  technique  a  preset  number  (N)  of  Markov  Chains

Particle Swarm Optimization: Particle swarm optimization realization) are simultaneously run in parallel. The chains
(PSO) is a population based stochastic optimization are initialized by latin hypercube sampling the parameter
technique developed by Eberhart and Kennedy [20], space using uniform distribution. These chains form a
inspired by social behavior of bird flocking or fish population, conveniently stored as a N × d matrix X, with
schooling [23]. Many researcher in water science d the dimension of the parameter space. For each chain, i

to the current position [18].

(a chain refers to a vector containing one parameter
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i  {1, 2,... N}, a candidate point z  (vector) is generated by RESULT AND DISCUSSIONi

taking  a  fixed multiple of the difference between
randomly chosen pairs of chains (without replacement) of Results of SUFI2: SUFI2 implementation is convenient
X  (X without x ) [32] : and easy. The modeler, however, should check a set of-i i

(1)

Where  signifies the number of pairs used to generate
the proposal, is a jumprate and r (j), r (n) {1, 2,...,N} but1 2

r (j)  r (n) i. The value of e is drawn from U (-b, b) with1 2 d

|b|< 1 and ~N (0,b*) is a white noise term with b* smalld

compared  to   the   width   of   the  target  distribution.
The Metropolis ratio is used to decide whether to accept
the candidate point or not. If accepted, the chain moves
from x to z , otherwise the location of the chain remainsi i

unchanged. From the guidelines of  in Random Walk
Metropolis (RWM), a good choice of ,

where d  denotes the number of dimensions that will beeff

updated. With this approach, a Markov chain is obtained,
the stationary distribution of which is the posterior
distribution. After a so-called burn-in period, the
convergence of a DREAM run can be monitored with the

-statistic  of  Gelman  and  Rubin  [33], which  compares
the  variance  within  and  between  the  chains. A value
of  smaller than 1.2 for each parameter ( < 1.2, k=1,
2,..., d)  diagnoses   convergence   to   a   limiting
distribution. The samples generated after convergence
can be used to summarize the posterior distribution and
communicate parameter and model predictive uncertainty.
The number of steps in each chain required to reach
stationarity (convergence) is commonly called “burn-in”
and  these  samples  are  removed  from the analysis [28]
A detailed description of DREAM appears in Vrugt et al.
[32].

DREAM   is   actually   available   now    as a
package in R developed by Guillaume and Andrews [34]
(from R-forge) and in this study it was linked with SWAT.

Criteria for the Comparison: We use the commonly used
Nash-Sutcliffe (NS) as objective function. Two indices are
used to quantify the goodness of calibration/uncertainty
performance [9, 10] the P-factor, which is the percentage
of data bracketed by the 95% prediction uncertainty band
(95PPU) (maximum value 100%) and the R-factor, which is
the average width of the band divided by the standard
deviation of the corresponding measured variable
(minimum 0). 

suggested posterior parameters to be prepared for next
iterations. Parallelizing the runs in SUFI2 [35] has
substantially decreased the calibration time of SUFI2 in
SWAT-CUP. SUFI2 is an iterative procedure. In this study
we performed three iterations of 500 simulations  each.
The calibration period was 9 years (1993-2001) with three
years used as warm-up period. In the third iteration, the
95PPU brackets 48% of the observations and r-factor
equals  0.51.  For  the  validation  period  (1990-1992) the
P-factor  and  R-factor were, respectively, 0.31 and 0.53.
Figure 2 describes the 95PPU (light grey area) in both
calibration and validation periods as well as the
observation points. The solid line is the best simulation
based on the run with the largest NS. Same periods for
calibration and validation like SUFI2 are considered for
two other methods.

Posterior distributions in SUFI2 are aways
independent and mostly uniformly distributed and
expressed as narrowed parameter ranges. Also, there are
no correlations between different parameters (all R s less2

than 0.25), as samples are taken randomly using Latin
hypercube sampling. 

Result of PSO: Like SUFI2, PSO also is linked to SWAT
(in the SWAT-CUP software, Abbaspour, 2011) and its
implementation is easy. We carried out totally 6000
simulation runs (e.g. 6 iterations with 1000 simulations).
The 95PPU brackets 66% of the observations and r-factor
equals 0.73. For the validation  period  the  R-factor  and
P-factor were, respectively, 0.61 and 0.83. Figure 3
describes the 95PPU (light grey area) in both calibration
and validation periods as well as the observation points.
The solid line is the best simulation based on the run with
the largest NS.

Marginal posterior distribution just in connection
with v__ALPHA_BNK.rte parameter is illustrated in
Figure 4. Remaining parameters have irregular posterior
distributions and are not shown.

Result of DREAM: We used a number of chains or
population size of N = 2d, d as the number of parameters,
with a maximum total of 36,000 model evaluations for
SWAT. Samples with NS more than 0.4 (like SUFI2) in
each of the 18 chains were selected as the behavioral
samples and 95PPU, P-factor and R-factor are based on
the  results  that  adopted   from   behavioral   parameters.



Middle-East J. Sci. Res., 15 (9): 1255-1263, 2013

1259

Fig. 2: 95PPUs derived by SUFI2 (dark gray area) during
the calibration period (top) and validation period
(bottom). The dots correspond to the observed
discharge at the basin outlet, while the solid line
represents the best simulation obtained by SUFI2.

Fig. 3: 95PPUs derived by PSO (dark gray area) during
the calibration period (top) and validation period
(bottom). The dots correspond to the observed
discharge at the basin outlet, while the solid line
represents the best simulation obtained by PSO.

Figure 5 presents the 95PPU with light grey area in both Fig. 6: Histograms approximating the marginal posterior
calibration and validation periods. The results for both distributions of aggregate SWAT behavioral
calibration and validation periods show observational parameters conditioning with Bayesian MCMC -
discharge values bracketed partly well within 95PPU  with DREAM.

Fig. 4: Histogram approximating the marginal posterior
distributions of aggregate SWAT behavioral
parameter conditioning with PSO

Fig. 5: 95PPUs derived by DREAM (dark gray area)
during the calibration period (top) and validation
period (bottom). The dots correspond to the
observed discharge at the basin outlet, while the
solid line represents the best simulation obtained
by DREAM.



Middle-East J. Sci. Res., 15 (9): 1255-1263, 2013

1260

Fig. 7: Box plots of parameters (on a ratio scale) uncertainty range for SUFI2, DREAM and PSO

Table 2: Measures values for three uncertainty methods for parameters on a ratio scale
Parameters
---------------------------------------------------------------------------------------------------------------------------------------------------

Method Measure v__ALPHA_BNK V__CH_K2 v__CH_N2 V__ESCO v__CANMX
SUFI2 Mean 0.28 129.25 0.24 0.84 52.15

SD 0.1 11.7 0.04 0.1 15.22
CV 0.34 0.09 0.18 0.12 0.29

PSO Mean 0.33 76.12 0.20 0.55 36.59
SD 0.27 46.53 0.10 0.38 36.47
CV 0.82 0.61 0.52 0.69 1.00

DREAM Mean 0.4 77.03 0.14 0.86 57.41
SD 0.26 41.23 0.09 0.15 27.1
CV 0.65 0.54 0.6 0.18 0.47

Table 3: Comparison of some measures of performance for both SUFI2 and DREAM in calibration and validation periods
Best simulation Number of 
------------------------------------- Number of Behavioral

Period Method R NS MSE P-factor R-Factor simulation Simulations2

Calibration DREAM 0.61 0.59 6014 0.63 0.67 36000 1599
SUFI2 0.59 0.57 6311 0.48 0.51 1500 351
PSO 0.62 0.59 5980 0.66 0.73 6000 202

Validation DREAM 0.69 0.69 4118 0.53 0.84 7200 -
SUFI2 0.71 0.71 3768 0.31 0.53 500 -
PSO 0.74 0.74 3419 0.61 0.83 202 -

P-factor 0.63 and 0.67, respectively for the calibration Posterior distributions in connection with two
period. For the validation, R-factor was 0.53 and P-factor parameters (v__ALPHA_BNK.rte and v__ESCO.hru) are
equaled 0.84. illustrated in Figure 6. Concerning posterior distribution

Because of the large number of evaluations in of v__ALPHA_BNK.rte parameter, it shows some
DREAM (36000 vs. 1500 in SUFI2), it can explores the similarity with its distribution in PSO (figure 4). Remaining
parameter space in more detail and the marginal posterior parameters have irregular posterior distributions and are
pdfs can be inferred for some sensitive parameters. not shown.
Posterior distributions of these individual parameters are The correlations between all parameters in all
well defined and occupy only a relatively small region methods are small and therefore there are no significant
interior to the uniform prior distributions. correlations.
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Comparison the Results: Table 2 lists the mean, standard In spite of the larger number of simulation in DREAM
deviation and coefficient of variation (CV) identified for
five most sensitive parameters on a ratio scale which can
only take non-negative values. CV is defined as the ratio
of the standard deviation to the mean of values. From that
table it is resulted that SUFI2 has smallest CVs between
two other methods for all five ratio scale parameters.

We get the same results by box-plots for all five ratio
scale parameters (also called box and whisker plots) in
Figure 7. The line across the box represents the median,
whereas the bottom and top of the box show the location
of the first and third quartiles (Q1 and Q3). The whiskers
are the lines that extend from the bottom and top of the
box to the lowest and highest observations inside the
region defined by Q1 - 1.5(Q3 - Q1) and Q3 + 1.5(Q3 - Q1).
Individual points with values outside these limits are
plotted with asterisks. Box-plot provides a visual
comparison of the uncertainty methods in connection
with different parameters. As seen for these 5 parameters,
SUFI2 box-plots, show small spread around the median
(small range of variability and fewer parameter
uncertainties) thus revealing the effectiveness and
efficiency of SUFI2 as compare to DREAM and  PSO.
Only the ESCO parameter has as spread around the
median in DREAM method which this matter also
understandable form table 2 that shows the closeness of
their CVs (0.12 compared to 0.18). Since sensitive
parameters with smaller CVs show very small range of
uncertainty compared to less sensitive parameters, it can
be used to specify most sensitive parameters.

Finally, a summary comparison between the three
uncertainty methods is  provided  in  Table  3.  As seen,
P-factor for calibration period in DREAM and PSO is
larger than SUFI2, but this is because the R-factor in
SUFI2 is narrower. In validation, PSO with smaller
simulation runs than DREAM slightly has better results
than it. But from best simulation perspective, PSO results
have largest R  and NS and smallest MSE among three2

methods in both periods.

CONCLUSION

As Yang et al [6] concluded that SUFI2 technique
could be run with the smallest number of model runs to
achieve good prediction uncertainty ranges in the sense
of a reasonable coverage of data points by the prediction
uncertainty bands. This characteristic is very important
for computationally demanding models.

rather than PSO and SUFI2, it can not provide results
better than other, except that two marginal posterior
distribution parameters can be obtained from DREAM. In
case of v__ALPHA_BNK.rte parameter, PSO also has a
posterior distribution some like with that parameter in
DREAM. In respect to performance of their best
estimates, PSO results have largest R  and NS and2

smallest MSE among three methods in both periods.
In according to CV values, it can be resulted that

three parameters of V_CH_K2, V_CH_N2 and V_ESCO in
most cases have smallest CV values and then are
specified as most sensitive parameters.
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