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A Review on Signal Decomposition Techniques
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Abstract:  Analysis  of  audio  and musical  information  signals deals  with  the  decomposition  into  atoms.
This subject is most interesting and useful for the researchers who want to invent the inherent properties of
the signal under decomposition and to construct a new version of it. Many algorithms have been proposed for
the decomposition of audio and musical content and methodologies have been demonstrated to visualizing the
behavioral characteristics of such signals.This article outlines an overview of various decomposition algorithms
such as high resolution matching pursuit, molecular matching pursuit, cyclic matching pursuit etc. and states
the basis for that structural decomposition. Atomic decomposition of signal leads to represent the structure
of audio or musical signal, allows to morph on sound into another by varying the parameter of an atom. This
paper provides an overview of sound decomposition by Dictionary Based Methods (DBM). Audio signal can
be decomposed into atoms by means of user-defined dictionary. This decomposition of signal using DBM can
be achieved in different methods based on different parameters. DBM is useful to analyze the signal in multiple
time scales such as music, environmental sound and biomedical signals.

Key words: Atoms  Matching Pursuit  Molecular Matching Pursuit  Cyclic Matching Pursuit  Signal
Decomposition  Dictionary Based Methods

INTRODUCTION

Atoms are the particles which are decomposed from
any audio signals and are referred as an acoustic
quantum, grain, gaboret, short time segment, atom,
wavelet etc and C. Roads has  given  32  different  names
in  his  book  [1].  Each  atom  is characterized by the set
of  parameters   such   as   scale,   time   and  frequency.
To decompose a signal by different methods, the
classification of decomposition techniques is depicted in
Figure.1. Decomposition of the sound signal is
represented by granular representation which carried out
by Dictionary Based Methods [2] for multi resolution and Fig. 1: Classification of Decomposition Techniques
Short Time Fourier Transform STFT for single time domain
resolution. means changing the atomic parameter alters the entire

Fourier analysis is an additive synthesis on other characteristics of the sound. In DBM, alteration in the
hand DBM can be seen as the analytical counterpart to a grain dose not affects the properties of the sound.
generalized granular synthesis [3]. In Fourier method,
frequency resolution is influenced by the size of window Dictionary Based Methods (DBM): DBM otherwise
which is nothing but the sample  under  consideration referred  as  sparse  approximation is implemented in
where as the DBM uses multi scale dictionary of atoms audio,  video   and   image  signal  decomposition  that
with frequency resolution and time-frequency resolution can  be  done   by   means   of   user-defined  dictionary.
that are not related with the size of analysis sample. A  dictionary  contains   several   short   lengths of
Another difference between Fourier and DBM is discrete   time    signals    called  atoms  and  each atom
translation invariance. STFT is translation variance, which has a set of individual parameters. The parameterized
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Fig.  2: An example of Gaussian atom with scale – s in ms Rx  x(t)
and atom translation – u in ms n  1

Table 1: Example Dictionary
f(n;s) S  (Hz)u f

Dirac 1 1 -
Rectangle 8 4 /2
Gaussian 64 16 /4

128 32 /128
Hann 1024 128 /2048

waveforms   have    been     interpreted     against  the
index    such    as    frequency,    time-frequency    and
time-scale   in    the    frequency     dictionary     or   Fourier
dictionary, time-frequency  dictionary  or  Gabor
dictionary and time-scale dictionary [4]. An atom can be
expressed as,

k(n) = f(n-u;s)cos(nw+ )

Based on the shape of the decomposed atom the
function f(n;s) can be varied. Where s is the time scale, u
is time translation, w  is  the  modulation  frequency.
Figure 2 shows an example of a Gaussian atom with the
time scale value and time translation. Table. 1 consists of
several atoms with various shapes based on different
parameters.

Matching  Pursuit   Algorithm:  Normally  a  sound
signal  consists  of  transient   and   sustained  parts.
STFT  and  other  transformations  decomposed  the
signal  by  means  of   fixed   basis  with  the  transient
parts   of the   signal   represented    by   short
waveforms and     sustained     parts    are decomposed
by long waveforms with short frequency [5]. So fixed
basis  decomposed  methods  are not enough to
efficiently  represent  all components. An adaptive
method is used to decompose the signal with efficient
manner.

Matching Pursuit algorithm uses this adaptive
technique to decompose the signal. This algorithm
follows dictionary based methods and decomposition
vectors are selected based on well localized time and
frequency.

Algorithm:

Step 1: Receive the signal x(t) and set the dictionary D 

Step 2: Initialization:

1

Step 3:
find d  with maximum inner product <Rx ,d >n n n

c  <Rx ,d >n n n

Rx  Rx  – c dn+1 n n n

n  n+1

Step 4: Repeat step 3 until ||Rxn|| < threshold

Step 5: Find the coefficients C , dn n

Flow Chart:
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The computation time characterizes matching pursuit Standard MP Dictionary D have a set of inner products
algorithm depends on the complexity of the data, <Rx ,d  > contains all information about Rx . From the
initialization parameters and breadth of the dictionary [6]. theorem, [8] the behavior of <Rx ,d > in the neighborhood
Reducing the computational time complexities by the of the best atom contain enough information to select a
factor of 1.9 and 44 of accuracy & performance carried out chirp atom.
in terms of correlation threshold (CT) that decreases the
time and the dictionary size. Multiple atom extraction also Outline steps for the ridge pursuit algorithm is given
reduces the time by bringing down the number of below:
iterations. And coarse-fine grid technique enables atoms
with numerous variable parameters to effectively Select the best Gabor atom like standard matching
represent the dictionary. pursuit algorithm

For effective decomposition, complete dictionary is Select a “locally optimal” chirp atom from the Gabor
required but majority of the atoms are not used in atom
dictionary during the decomposition. Removal of unused Compute new residual using the chirp atom
atoms from the dictionary reduces the dictionary size and
improves the performance without affecting the accuracy. From this ridge pursuit use a sub-dictionary of local
This can be achieved by correlation threshold that is the maxima of the Gabor dictionary.
ratio of maximum correlation value to the largest Outline steps for the fast ridge pursuit algorithm is
correlation of all atoms in the dictionary. This CT is given below:
calculated for all atoms during the decomposition process,
based on this a reduced dictionary is formulated. When Build a sub Dictionary D  of L local maxima of the
the accuracy is mandatory, more number of CT values are Gabor dictionary D.
chosen otherwise for maximum performance gain lesser For each atom in D , use the fast local estimation
number of threshold is enough. After getting a reduced procedure to get chirp atom sub dictionary.
dictionary, an atom with maximum correlation is chosen Run normal pursuit in D  until it reaches to empty.
but it is not immediately subtracted. Instead a fine gird
around the selected atom is found from that grid, the best Cyclic Matching Pursuit (CMP): This approach provides
matched atom is estimated then this value can be lower approximation error than standard MP by means of
subtracted from the signal. modifying the parameters of atoms in  cyclic  manner.

The main limitation in the standard matching pursuit After  the  selection  of  atoms  using  standard   MP  for
(MP) algorithm is the computational expensive which n-order representation
means this algorithm find the maximum inner product in
lengthy manner if the dictionary is large. Hence fast and SD  = { H(n),d(n),c(n) }
efficient schemes are used to minimize the computational x(n) = H(n)d(n) + c(n)
complexity. Based on that the standard MP is
implemented in different flavors such as fast MP, high Augment this representation by the rule introduced
resolution MP, cyclic MP, molecular MP and orthogonal by L.Sturm in [8].
MP.

Fast Matching Pursuit: Fast matching pursuit can be D(n+1) = [dT(n),<c(n),h(n)>]T
implemented   by   the  modified  MP  algorithm  called C(n+1) = x – H(n+1)d(n+1)
Fast  Ridge   Pursuit,    which    means    it   approximates
M  terms  of Gaussian chirps from an N number of and finally refined ith atoms from n atoms by means of
acoustic signals using Gaussian chirp dictionary [7]. Rx  = Rx  + d (0)c (0). Parameters d (0) and c (0) are
Gribonval suggested to use fast ridge pursuit algorithm the zeroth set of refined parameters. For each iteration this
that reduce the cost of the computation complexities to refinement can be implemented and to get less error
O(MN) from the standard matching pursuit complexity during the decomposition of a signal. This approach gives
O(MNlog N). Fast ridge pursuit is obtained from ridge the better error control but the drawback of this method is2

pursuit algorithm that depends on the chirp dictionary. the highest computational cost.

n n n

n n

k

k

k

MP,n

H(n+1) = [H(n)|h(n)]

n/i n/i-1 n n n n



Middle-East J. Sci. Res., 15 (8): 1108-1112, 2013

1111

Molecular Matching Pursuit (MMP): L.Daudet define Step 2: Find the atom based on the energy of the Rx
that the  audio  or  musical  signals  have  a  structured located on the time-frequency dictionary d . This is small
data such as tonal part, transient part and residual [9]. value compared with correlation between Rx and d  in
This structural information is used to group the atoms of Standard MP
the same class and that groups of atoms are called as
molecules. Based on these molecules a molecular Step 3: Find the residue Rx
matching pursuit algorithm is proposed [9]. To design a
molecule MP by estimating m atoms from Mi group and Step 4: Check the residue whether it reaches the belowi

subtract from the residual. In order to decompose the threshold value or not.
signal, form two different dictionary such as discrete
cosine transform and wavelet transform. Decompose the Step 5: If not, repeat step2 until the value should below
signal based on grouping the tonal molecules (group of the threshold value.
discrete cosine transform atoms) and grouping transient
molecules (group of discrete wavelet transform atoms). Orthogonal Matching Pursuit (OMP): OMP is somewhat
Decomposes the signal based on this dictionary, the similar to standard MP but the difference is, after finding
MMP algorithm for signal decomposition is given below: the residual an orthogonality between the selected atoms

Step 1: Initialization: Compute tonal atoms and transient chosen during the iteration process [11]. The step for an
atoms of the signal x. OMP is given below:

Step 2: Find modulus of regularity L and local tonality Step 1: Initialize the signal x(t) and Rx = x(t)
index T by L = max  and T = max T.

Step 3: Identify the most significant structure that is if L of Rxn with dn.
> T, the structure type is “transient molecule” otherwise
if T > L, then the structure type is “tonal molecule”. Step 3: Form a matrix based on the previously selected

Step 4: Identify the atom and redefine the residual and operator onto the span of column.
correlation values.

Step 5: If max (T,L) <  then stop, otherwise incrementstop

the i value to one and repeat step 2. Step 5: Update the residue through an identity matrix.

High Resolution Matching Pursuit (HRMP): Like dictionaries. By using full backward orthogonality of error
standard  matching   pursuit,   HRMP   also   used  the it gives optimal approximation with respect to the selected
time-frequency dictionaries in advanced manner. By using subset of the dictionary [12]. OMP guarantees converge
different correlation function, each step in algorithm finds of the signal decomposition in efficient manner by means
the best match between the selected atoms. In standard of limited number of steps.
MP, the atom selection is based on the inner product
between the time-frequency atoms but a new correlation CONCLUSION
function [10] maximizes the signal energy, based on that
the algorithm can select the atom in efficient manner. While surveying the decomposition methods of
HRMP avoids to create an energy at time-frequency musical and audio signal, it is concluded that dictionary
location where there was nothing. Since it creates energy based method with different flavors has flexibility in
at the beginning of the signal and avoids the pre-echo design procedure when compared with STFT and
effects. orthogonal transformations. This  paper  gives a

Algorithm of HRMP is given in the following steps: technology  and  an  eye  opener manuscript for those

Step 1: Initialize Rx from x(t) technology.  Appropriate  signal   representation   can  be

n

n

n+1

calculated. This is used to avoid the redundancy of atoms

Step 2: Select the atom based on maximum inner product

atoms as the columns. Find the orthogonal projection

Step 4: Apply the orthogonal projection to the residue.

OMP gives faster convergence for non-orthogonal

snapshot for the beginners of the musical information

who want to work on audio signal decomposition
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figured out based on the decomposition analysis for 7. Gribonval, R., 2001. Fast matching pursuit with a
various applications like musical signal processing and multiscale dictionary of guassian chips, IEEE Trans.
audio morphing, digital image processing bio-signal Signal Process., 49(5): 994-1001.
processing etc. 8. Sturm, B.L. and M. Christensen, 2010. Cyclic
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