
Middle-East Journal of Scientific Research 15 (7): 1067-1075, 2013
ISSN 1990-9233
© IDOSI Publications, 2013
DOI: 10.5829/idosi.mejsr.2013.15.7.11109

Corresponding Author: Dima Suleiman, Department of Business Information Technology, The University of Jordan, Jordan.
1067

ERS-A Algorithm for Pattern Matching

Dima Suleiman, Amjad Hudaib, Aseel Al-Anani, Rola Al-Khalid and Mariam Itriq1 2 2 2 3

Department of Business Information Technology, The University of Jordan, Jordan1

Department of Computer Information System, The University of Jordan, Jordan2

Department of Business Information Technology, The University of Jordan, Jordan3

Abstract: Pattern matching algorithms have many applications that cover a wide range including information
retrieval, text processing, DNA sequence analysis and pattern recognition. In this paper, we propose a new
algorithm ERS-A, that made enhancements on both two sliding windows (TSW) and Fast Pattern Matching
(RS-A) algorithms. In ERS-A and TSW algorithms two sliding windows are used to scan the text from the left
and right simultaneously, but while TSW utilizes the idea of Berry Ravindran bad character shift function (BR),
ERS-A adds an improvement by using the shift technique provided by RS-A algorithm. RS-A algorithm uses
four consecutive characters in the text immediately following the pattern window, instead of using two
consecutive characters as in BR. The experimental results show that the ERS-A has enhanced the searching
process significantly.

Key words: Pattern matching Berry-Ravindran algorithm Two Sliding Windows algorithm RS-A Fast
Pattern Matching Algorithm

INTRODUCTION on the number of consecutive characters in the text

Pattern matching algorithms are used in many using one, two, three and others may use four
applications vary from search engines to more complex characters.
systems such as biological applications, especially that In this paper, we propose a new pattern matching
related to DNA [1-4]. Such algorithms differ from each algorithm which made an enhancement on RS-A so we
other according to different criteria, some of them focus called it ERS-A. The algorithm uses two sliding windows
on altering the searching process [5, 6], shifting values such that used in TSW algorithm [6], but made an
[7-10] and preprocessing techniques [9, 11], but in all enhancement on the shift values by using RS-A algorithm
cases the main goal is to make the searching process [7]. In this case the Preprocessing phase of TSW
faster to accommodate the needed purposes. algorithm will be changed to take into account four

Pattern matching algorithms search for a certain consecutive characters instead of two consecutive
pattern p of length m in a text t of length n. Some characters.
algorithms use one window [7, 12-18]; whose size is equal Comparisons are made between the new algorithm
to the pattern length m, for searching process. Others and three others algorithms, TSW [6], ETSW [5] and RS-A
using two windows [6, 5, 19], one from the left and the [7]. The experimental results section showed that the new
other from the right each of length m, in this case, the algorithm is better than the others in case of the number
comparisons between the text and two windows
happened at the same time. Other Algorithms depend
on making some modification on the shifting values.
After aligning the pattern with the text a mismatch may
occur and the pattern will be shifted. The shifting value
vary from one algorithm to other, such variations depend

immediately after the pattern window, some algorithms

of comparisons and the number of attempts. The rest of
this paper is organized as follows: The next section
introduces some literature review about the topic; it is
followed by a section that covers the ERS-A algorithm.
We then present the analysis. The conclusion and future
work is drawn in the last section.

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1068

Related Works: Many Pattern matching algorithms have RS-A [7] maximizes the efficiency of BR [10]. While
been developed to cover the diversity of needed BR uses two consecutive characters in the text
applications [1-3, 17, 20]. Most of these algorithms immediately to the right of the pattern window; RS-A uses
depend on two phases: preprocessing phase and four characters. The modifications happened on
searching phase. Some algorithms try to make preprocessing phase, other issue is that BR scanning the
enhancement in either preprocessing or searching phase, text from the left to the right while RS-A scanning it from
while others improve both [9]. The needed improvement the right to the left.
was to minimize the execution time which can be achieved ERS-A uses two sliding windows in the searching
by reducing the number of comparisons between the text process, the same as in TSW [6]. In addition to using
and patterns. Other improvement needed to minimize RS-A algorithm to calculate the shift values of the right
the memory capacity needed in the preprocessing phase pattern, we made some enhancement to calculate the
[9, 11]. shifting values for the left pattern depending on RS-A

The Berry-Ravindran algorithm (BR) [10] made algorithm. The result is a new algorithm (ERS-A) that
some adjustment in a preprocessing phase of the maximizes the efficiency of the searching process.
searching algorithm. The shifting values depend on the
bad character shift for two consecutive characters in The Enhanced RS-A Algorithm (ERS-A): ERS-A
the text immediately to the right of the pattern algorithm uses two sliding windows to search for a certain
window. The pattern is aligned with the text from the pattern p of size m in a text t of size n, where each window
left, in case of a mismatch the pattern will be shifted to is of size m. As with TSW algorithm the two windows
the right. The pre-processing and searching time aligned with the text one from the left and the other from
complexities of BR algorithm are O(2) and O(nm) the right, where the two windows scan the text at the same
respectively. time. In case of a mismatch in both windows the two

An enhancement on BR algorithm was improved by windows will be shifted. The shifting values depend on
using Two Sliding Window algorithm (TSW). TSW uses RS-A algorithm to get better shift values. The searching
two windows instead of one, each of them equal to the process will stop either when the pattern does not exist at
length of the pattern m. One window aligned with the text all in the text or when the pattern is found by the left or
from the left and the other aligned from the right. the right window.
Scanning the text happened at the same time from both The main differences between ERS-A and RS_A
sides, in case of a mismatch the two windows will be algorithms are: ERS-A uses two sliding windows rather
shifted. The left window will be shifted to the right and than one to scan all the text characters while RS_A uses
the right window will be shifted to left. The process will only one window to scan the text from the right. Another
stop either if there is a match or if the pattern is not difference is that the ERS-A uses two arrays; each array
found at all. In TSW, the best time complexity is O(m) and is a one dimensional array of size m-3, the arrays are used
the worst case time complexity is O(((n/2-m+1))(m)). to store the calculated shift values for the two sliding
The pre-process time complexity is O(2(m-1)). windows, while the original RS_A algorithm uses two

In order to minimize the number of comparisons, variables to store the shift values. In both algorithms the
Enhanced Two Sliding Window algorithm (ETSW) [5] shift values are calculated only for the pattern characters.
made some modification on TSW. The preprocessing The main difference between ERS-A algorithm and
phase remains the same; however the modifications TSW algorithm is: The ERS-A uses two arrays; each array
happened on the comparison process between the text is a one dimensional array of size m-3 while TSW uses
and the two windows in searching phase. Instead of two arrays each array is a one dimensional array of size
comparing one character at a time, parallel comparisons m-1. The main reason for this reduction is related to using
happened between the text and the pattern by using two four consecutive characters instead of two.
pointers one from the left of the pattern and the other from
the right of the same pattern. The same process applied to Pre-Processing Phase: The pre-processing phase is used
the two windows, the best time complexity is O(m/2) and to generate two arrays nextl and nextr, each array is a
the worst case time complexity is O(((n/2-m/2+1))(m/2)). one-dimensional array. The values of the nextl array are
The pre-process time complexity is O(2(m-1)). calculated according to our proposed shift function.

1 if p[m-1]=a
2 if p[m-2][m-1]=ab
3 if p[m-3] [m-2][m-1]=abc
m+1 if p[0]=b …(1)
m+2 if p[0]=c
m+3 if p[0]=d
m-i if p[i][i+1][i+2][i+3]=abcd
m+4 otherwise

m+3 if p[m-1]=a
m+2 if p[m-1]=b
m+1 if p[m-1]=c
1 if p[0]=d …(2)
2 if p[0][1]=cd
3 if p[0][1][2]=bcd
m-((m-4)-i) if p[i][i+1][i+2][i+3]=abcd
m+4 otherwise

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1069

nextl contains the shift values needed to search the
text from the left side. To calculate the shift values,
the algorithm considers four consecutive text
characters a, b, c and d which are aligned immediately to
the right of the sliding window. Initially, the indexes of
these four consecutive characters (a,b,c,d) in the text
string from the left are (m+1), (m+2), (m+3) and (m+4)
respectively as in Equation (1) where m is the pattern
length.

ERS-A left shift value [a,b,c,d]

= min

Fig. 1: The pre-processing algorithm

On the other hand, the values of the nextr array are algorithm are:
calculated according to RS-A algorithm. nextr contains
the shift values needed to search in the text from the right Step1: After aligning the text with the two windows,
side. Initially the indexes of the four consecutive comparisons are made between the first character
characters in the text string to the left of the right window of the text from the left and the first character of
are (n-m-4), (n-m-3), (n-m-2) and (n-m-1) for a, b, c and the left window and also between the last character
d respectively, which are used to calculate the shift values of the text from the right and the last character of
as in Equation (2). the right window. If there is a mismatch go to step2;

ERS-A right shift value [a,b,c,d] and the patterns continues until a complete match is

= min nextl and nextr arrays depending on the four text
characters placed immediately after the pattern
windows. The four characters located to the right
side of the left window and four characters located
to the left side of the right window. The corresponding

The two arrays will not be changed during the windows are shifted to the correct positions based on
searching process. Figure 1 illustrates the steps of the the shift values, the left window is shifted to the right and
pre-processing algorithm. the right window is shifted to the left. Both steps are

Searching Phase: In this phase, the text is scanned from from any sides or until both windows are positioned
both sides using the left and the right windows. beyond n/2.

The searching process is stopped when the pattern
is found either from the beginning or from the end of the Working Example: In this section, we will present an
text. In case of a mismatch, the left window will be shifted example to clarify the new algorithm. Given:
to the right using the values in nextl, while the right Pattern(P)=”ABBCEDAB”, m=8,
window will be shifted to the left using the values in nextr Text(T)=”ACDABABBACEDABBCEDAABDABABBC
array. EDABAABABBCEDCDABEDAB”, n=50

The two main steps of the ERS-A searching phase

otherwise the comparison process between the text

found.

Step 2: In this step, we use the shift values from the

repeated until the first occurrence of the pattern is found

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1070

Fig. 2: The nextl and nextr arrays

Fig. 3: Working Example

Pre-Processing Phase: Initially, we have to build the two starting from 0. For example for the pattern structure
next arrays (nextl and nextr). We can use the for loop in ABBCEDAB, the consecutive characters ABBC, BBCE,
line number 3 in Figure 1, in this case the shift values BCED, CEDA and EDAB are given the indexes 0,1,2,3 and
are stored in two arrays nextl and nextr as shown in 4 respectively.
Figure 2(a) and Figure 2 (b) respectively.

After creating nextl and nextr arrays, we have to Searching Phase: The searching process for the pattern
determine the shift values from the left and right. The left p is illustrated through the working example as shown in
shift values stored in shiftl which depends on Equation Figure 3.
(1) and the right shift values stored in shiftr which
depends on Equation (2). First Attempt: In the first attempt (Figure 3(a)), we align

According to the line number 2 in preprocessing the first sliding window with the text from the left. In this
algorithm the initial values of shiftl = shiftr = m+4 = 12 case, a mismatch occurs between text character(A) at T[1]
which may be changed. and pattern character (B) at P[1]; therefore we take the

To determine the values of shiftl and shiftr depending four consecutive characters of the text at index 8, 9, 10 and
on nextl and nextr arrays, we must take each four 11 which are (B, A, C and E) respectively to determine the
consecutive characters of the pattern and give it an index left shift value (shiftl).

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1071

Initially shiftl =12, according to Figure 1 the if statement Proof: The worst case occurs when at each attempt, all
in line number 5 is true that is p[m-1]=a. the characters of both the pattern and the text are matched
p[m-1]=P[7]=B and a=T[8]=B then according to a except the last character and at the same time the shift
preprocessing algorithm the shift value will be 1. value is equal to 1. If the pattern is aligned from the left

Second attempt: In the second attempt (Figure 3(b)), we two consecutive characters is matched with the last
align the second sliding window with the text from the pattern character, while if the pattern is aligned from the
right. In this case, a mismatch occurs between text right then shift by one occurs when the second character
character (B) at T[45] and pattern character (C) at P[3]; of the two consecutive characters is matched with the first
therefore, we take the four consecutive characters of the pattern character.
text at index 38, 39, 40 and 41 which are (B, C, E and D)
respectively. To determine the amount of shift (shiftr), we Lemma 2: The best case occurs when the pattern is found
have to do the following two steps: at the first index or at the last index (n-m). In these cases

We find the index of BCED in the pattern which is 2. the complexity is O(m).
Since we search from the right side, we use nextr array of
index (2): nextr[2]=6, then the shift value will be 6. Lemma 3: The Average case time complexity is
Therefore the right window will be shifted to the left 6 O(n/(2*(m+4)))
steps.

Third Attempt: In the third attempt (Figure 3(c)), a consecutive characters of the text directly following the
mismatch occurs from the left between text character (C) sliding window is not found in the pattern. In this case,
at T[2] and pattern character (B) at P[1]; therefore we take the shift value will be (m+4) and hence the time complexity
the four consecutive characters from the text at indexes 9, is O([n/(2*(m+4))]).
10, 11 and 12 which are (A, C, E and D) respectively. Since
ACED is not found in the pattern, so the window will be RESULTS AND DISCUSSION
shifted to the right 12 steps.

Fourth Attempt: In the fourth attempt (Figure 3(d)), a experiments have been done in ERS-A algorithm using
mismatch occurs from the right between text character (D) Book1 from the Calgary corpus to be the text [21]. Book1
at T[43] and pattern character (B) at P[7]. According to consists of 141,274 words (752,149 characters). Patterns of
line number 13 in Figure 1, the if statement is true since different lengths are also taken from Book1.
P[0][1] = cd=AB, so the right shift value shiftr will be 2 Table1 and Figure 4 show the results of comparing
then the pattern will be shifted two steps to the left. the algorithms TSW, RS-A and ERS-A. Figure 4(a) and

Fifth Attempt: The fifth attempt (Figure 3(e)), we align comparisons respectively.
the left most character of the pattern P[0]with T[13]. In Table 1, the first column represents the pattern
A comparison between the pattern and the text characters length; the second column is the number of words of a
leads to a complete match at index 13. In this case, the certain length. According to the result, the number of
occurrence of the pattern is found using the left window. comparisons and the number of attempts of ERS-A

Analysis For example, as shown in Table 1, 681 words of length 9,
Preposition 1: The space complexity is O(2(m-3)) where m the average number of comparisons in TSW is 10538, in
is the pattern length. RS-A is 12911 and in the new algorithms is 8957, which is

Preposition 2: The pre-process time complexity is result can be shown about the average number of
O(2(m-3)). attempts. Although ERS-A algorithm uses the same shift

Lemma 1: The worst case time complexity is the text from both sides simultaneously, since RS-A
O(((n/2-m+1))(m)). algorithm only searches the text from the right side, so

then shift by one occurs when the first character of the

Proof: The Average case occurs when the four

As many pattern matching algorithm, many

Figure 4(b) represent the average number of attempts and

algorithm is always better than TSW and RS-A.

the minimum value among the others values. The same

function of RS-A algorithm the ERS-A algorithm searches

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1072

Table 1: The average number of attempts and comparisons of TSW, RS-A and ERS-A algorithms
TSW RS-A ERS-A
------------------------------------- --- --

Pattern length Number of words Attempts Comparisons Attempts Comparisons Attempts Comparisons
5 4535 4456 4896 7361 8191 3533 3880
6 2896 7596 8311 8545 9556 6166 6750
7 1988 9341 10263 9512 10638 7737 8506
8 1167 10056 11087 10660 11922 8451 9319
9 681 9538 10538 11477 12911 8106 8957
10 382 9283 10272 11543 12927 7970 8830
11 191 5451 5967 10480 11672 4701 5146
12 69 6384 7168 7927 9030 5589 6286
13 55 7947 8673 8560 9422 6955 7587
14 139 19437 21319 16086 17845 17115 18776
15 32 19682 21739 16176 18318 17385 19198
16 10 20029 21596 21411 23531 17722 19147
17 3 21897 25404 18551 23119 19521 22669

Fig. 4: The average number of attempts and comparisons Table 5, which contains the number of attempts and
of TSW, RS-A and ERS-A algorithms comparisons performed to search for a set of patterns that

the average number of comparisons and attempts in
ERS-A algorithm are less than that of the RS-A algorithm.
The same conclusion results when comparing new
algorithm with TSW, ERS-A algorithm uses four
consecutive characters instead of two, so that the number
of comparisons and attempts is lower and the searching
process is faster.

Table 2 shows the average number of attempts and
comparisons for 100 words taken from the right side of
Book1. Clearly, we can see that RS-A is the best among
the others since it scan the text only from the right hand
side. But we can see the different results on Table 3 and
Table 4, where ERS-A algorithm is the best.

Table 3 shows the average number of attempts and
comparisons for 100 words taken from the middle of
Book1, while Table 4 shows the average number of
attempts and comparisons for 100 words taken from the
left side of Book1.

Performance of ERS-A algorithm is observed in

Table 2: The average number of attempts and comparisons performed to search for (100) patterns selected from the right side of the text

TSW RS-A ERS-A
--------------------------------------- --------------------------------------- --

Pattern length Number of words Attempts Comparisons Attempts Comparisons Attempts Comparisons

5 100 185 206 89 76 146 163
6 100 227 255 95 112 182 205
7 100 347 388 154 181 286 324
8 100 504 568 217 250 424 476
9 100 670 750 296 341 571 640
10 100 1160 1290 523 599 999 1117
11 100 622 705 269 319 529 597
12 100 865 972 390 457 756 860

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1073

Table 3: The average number of attempts and comparisons performed to search for (100) patterns selected from the middle of the text
TSW RS-A ERS-A
--------------------------------------- --------------------------------------- --

Pattern length Number of words Attempts Comparisons Attempts Comparisons Attempts Comparisons
5 100 13965 15140 8871 9833 11038 11970
6 100 16682 18317 10135 11294 13536 14870
7 100 27267 30095 15497 17487 22607 24971
8 100 27830 30915 16748 18783 23385 25976
9 100 33929 37200 18822 20929 28764 31541
10 100 29676 32817 16766 18783 25471 28193
11 100 23195 24646 16587 18028 19886 21119
12 100 26806 30222 17706 20313 23484 26507

Table 4: The average number of attempts and comparisons performed to search for (100) patterns selected from the left side of the text
TSW RS-A ERS-A
--------------------------------------- --------------------------------------- --

Pattern length Number of words Attempts Comparisons Attempts Comparisons Attempts Comparisons
5 100 271 297 9942 11087 216 238
6 100 364 402 16685 18783 295 326
7 100 402 447 17682 19682 333 372
8 100 536 592 17198 19078 451 499
9 100 776 859 20214 22954 660 730
10 100 1579 1756 25880 29000 1361 1517
11 100 619 669 26554 29572 531 573
12 100 1667 1872 25333 28768 1459 1641

Table 5: The number of attempts and comparisons performed to search for a set of patterns that do not exist in the text
TSW RS-A ERS-A
--- -- --

Pattern length Attempts Comparisons Attempts Comparisons Attempts Comparisons
5 888 978 709 793 703 771
6 778 852 638 712 635 694
7 684 739 575 642 570 616
8 598 612 500 512 499 500
9 545 561 468 480 464 477
10 512 552 454 509 445 479
11 472 507 424 474 415 445
12 870 974 789 890 776 869

Table 6: The average number of attempts and comparisons for patterns with different lengths
TSW BR ETSW RS-A ERS-A

Pattern Number -------------------------------- -------------------------------- ------------------------------- ------------------------------ -------------------------------
length of words Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons Attempts Comparisons
5 4535 4456 4896 9577 10645 4456 3549 7361 8191 3533 3880
6 2896 7596 8311 10898 12173 7596 7633 8545 9556 6166 6750
7 1988 9341 10263 11953 13345 9341 9118 9512 10638 7737 8506
8 1167 10056 11087 13256 14807 10056 10115 10660 11922 8451 9319
9 681 9538 10538 14149 15892 9538 9590 11477 12911 8106 8957
10 382 9283 10272 14127 15799 9283 9339 11543 12927 7970 8830
11 191 5451 5967 12808 14243 5451 5482 10480 11672 4701 5146
12 69 6384 7168 9598 10923 6384 6433 7927 9030 5589 6286
13 55 7947 8673 10334 11370 7947 7986 8560 9422 6955 7587
14 139 19437 21319 19548 21673 19437 19535 16086 17845 17115 18776
15 32 19682 21739 19817 22384 19682 19782 16176 18318 17385 19198
16 10 20029 21596 26086 28644 20029 20092 21411 23531 17722 19147
17 3 21897 25404 22554 28148 21897 22147 18551 23119 19521 22669

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1074

Fig. 5: The average number of attempts and comparisons of TSW, BR, ETSW, RS-A and ERS-A algorithms

do not exist in the text. Table 6 and Figure 5 show the REFERENCES
results of comparing ERS-A algorithm with other
algorithms. ERS-A algorithm has the minimum average 1. Liu Z., X.Chen, J.Borneman and T. Jiang, 2005. A Fast
number of comparisons and attempts among all other Algorithm for Approximate String Matching on
algorithms. The results are reasonable since ERS-A Gene Sequences A. Apostolico, M. Crochemore and
algorithm scan the text from both side simultaneously K. Park, Springer-Verlag Berlin Heidelberg, pp: 79-90.
using two pattern window. In addition to that, the shift 2. Bhukya, R. and D. Somayajulu, 2011. Multiple Pattern
value is maximized by using RS-A shift algorithm. RS-A Matching Algorithm using Pair-count. IJCSI
depends on using four consecutive characters, which International Journal of Computer Science
means that the shifting values range from 1 up to m+4 Issues, Vol. 8, Issue 4, No 2, July 2011 ISSN (Online):
characters. pp. 1694-0814.

CONCLUSION Forward Backward Multiple Pattern Matching

In this paper, a new pattern matching algorithm and Technology, pp: 1513- 1521.
ERS-A is implemented. ERS-A improves the performance 4. Senapati, K.K., G. Sahoo and S. Sahana, 2010. An
by reducing the number of comparisons and the number Efficient pattern matching algorithm for biological
of attempts needed to search for a particular pattern. sequence. Proceedings of the International
The new algorithm has two aspects, the first one using conference on Image processing, Computer
two sliding windows to scan the text from both sides at Vision and Pattern Recognition (IPCV2010), VOL-II,
the same time. The second aspect is related to using RS pp: 755-759.
shifting algorithm to maximize the shift values; therefore 5. Itriq, M., A. Hudaib, A. Al-Anani, R. Al-Khalid and
an enhancements are made on two algorithms TSW and D. Suleiman, 2012. Enhanced Two Sliding Windows
RS-A. While TSW uses BR bad character shift algorithm, Algorithm For Pattern Matching (ETSW). Journal of
ERS-A uses RS-A shifting algorithm. ERS-A can be used American Science, 8(5): 607- 616.
in many applications specially the ones related to 6. Hudaib, A., R. Al-Khalid, D. Suleiman, M. Itriq and
Biological sequence such as DNA. A. Al-Anani, 2008. A Fast Pattern Matching

We evaluated ERS-A performance by using a text Algorithm with Two Sliding Windows (TSW).
string and various set of patterns. In addition the Journal of Computer Science, 4(5): 393-401.
ERS-A reduced the memory required in a preprocessing 7. Senapati, K.K., S. Mal and G. Sahoo, 2012. RS-A Fast
phase by using two one-dimensional arrays each of Pattern Matching Algorithm for Biological
(m-3) length only. In future research, we intend to Sequences.International Journal of Engineering and
implement the ERS-A algorithm on real parallel Innovative Technology (IJEIT), 1(3): 116-118.
processors to minimize the number of comparisons and 8. Sheik, S.S., Aggarwal, K. Sumit, Poddar, N. Anindya,
attempts. Also we intend to implement the idea of the two Balakrishnan and K. Sekar, 2004. A FAST Pattern
sliding windows on other algorithms such as KMP and Matching Algorithm. Journal of Chemical Information
BM. and Computer Sciences, 44(4): 1251-1256.

3. Bhukya, R. and D. Somayajulu, 2010. An Index based

Algorithm. World Academy of Science, Engineering

Middle-East J. Sci. Res., 15 (7): 1067-1075, 2013

1075

9. Salmela, L., J. Tarhio and P. Kalsi, 2010. Approximate 16. Knuth, D.E., J.H. Morris and V.R. Pratt, 1977. Fast
Boyer-Moore String Matching for Small pattern matching in strings. SIAM J. Comput.,
Alphabets. 58(3): 591-609(19) 6(2): 323-350.

10. Berry, T. and S. Ravindran, 2001. A Fast String 17. Faro, S. and M.O. K¨ulekci‡ 2012. Fast Packed String
Matching Algorithm and Experimental Results. In Matching for Short Patterns.arXiv:1209.6449v1 [cs.IR]
Proceedings of the Prague Stringology Club 28 Sep 2012.
Workshop ’99 (eds Holub, J.and Simanek, M), 18. Chao, Y., 2012. An Improved BM Pattern Matching
Collaborative Report DC-99-05, Czech Technical Algorithm in Intrusion Detection System. Applied
University, Prague, Czech Republic, pp: 16-26. Mechanics and Materials 148-149: 1145-1148.

11. Vangipuram, R.K., S.J. Sandeep and A. Reddy, 2011. 19. El Emary, I.M.M. and M.S.M. Jaber, 2008. A New
Text Segmentation Based Pattern Search Algorithm. Approach for Solving String Matching Problem
International Journal of Wisdom Based Computing, through Splitting the Unchangeable Text. World
1(3). Applied Sciences Journal, 4(5): 626-633.

12. Boyer, R.S. and J.S. Moore, 1977. A Fast String 20. Johnson, M., 2002. A simple pattern-matching
Searching Algorithm. Commun. ACM, 20: 762-772. algorithm for recovering empty nodes and their

13. Pendlimarri, D. and P.B.B. Petlu, 2010. Novel Pattern antecedents. Proceedings of the 40 Annual Meeting
Matching Algorithm for Single Pattern Matching. of the Association for Computational Linguistics
International Journal on Computer Science and (ACL), Philadelphia, pp: 136-143.
Engineering, 02(08): 2698-2704. 21. Calgary Corpus available at: ftp:// ftp.cpsc.ucalgary

14. Franek, F., C.G. Jennings and W.F. Smyth, 2007. A .ca/pub/projects/text.compression.corpus/
simple fast hybrid pattern-matching algorithm.
Journal of Discrete Algorithms, 5(4): 682-695.

15. Yang Wang, 2009. On the shift-table in
Boyer-Moore's String Matching Algorithm. JDCTA;
3(4): pp. 10-20, doi: 10.4156/jdcta.

th

