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Simulation of LR Fuzzy Random Variables with Normal Distribution
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Abstract: This work deals with the simulation of fuzzy random variables (FRVs) which is essential in modelling
of various real situations. There are many situations in which random data are reported with uncertainty due
to the constraints of measurement systems and/or human subjectivity. In such situations, only FRVs can
describe the subject and cover uncertainty due to the fuzzy vagueness as well as randomness. In this study,
based on the concept of support functions, the general method of FRVs simulation is extended especially for
triangular/trapezoidal and arcuate shapes in LR family with Normal distribution.
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INTRODUCTION the situation that we face with randomness which comes

In many real-life  problems  the  available the whole population. Further second kind of uncertainty
observations are not real-valued but rather imprecise is related to the fuzziness of the data and/or the
valued. Uncertain information can take on many different parameters. Fuzzy random variable is vehicle to modelling
forms. There is uncertainty which arises from ignorance, conditions in the presence of them [9, 10]. The defined
from various classes of randomness, from the inability to probability distribution models the stochastic variability
perform adequate measurements, from lack of knowledge of observations, while the defined membership function
or from vagueness, like the fuzziness inherent in our models the vagueness in a system [8]. In this way, the
natural language [1-3]. concept of an FRV that extends the classical definition of

In recent decades, fuzzy sets are increasingly used in a random variable was introduced by Féron [11].
various contexts like optimization, image processing, Kwakernaak [12] conceptualized an FRV as a vague
learning, decision-making, data analysis, engineering and perception of a crisp but unobservable RV that taking
control systems [3, 4]. There are many complex fuzzy value instead of real values. Further Puri and
phenomena in which classical logic and probability theory Ralescu [2] conceptualized the FRV as a fuzzification of a
are not able to describe and analyse them properly [5]. random set, whose values are fuzzy subsets of  or, more
Further, there exist some problems in which they do not generally, of a Banach space. Later on and sometimes
necessarily need to have exact solutions but rather an independently, other variants were proposed by Kruse
approximate and fast solution can be useful in making and Meyer [13] and Diamond and Kloeden [14].
preliminary decisions [3]. In all of the mentioned problems, Krätschmer [15] surveyed all of these definitions and
fuzzy variables characterize fuzzy uncertainty very well. proposed a unified approach. In all of these works, an

However, there are many situations which consist of FRV is defined as a function which assigns a fuzzy subset
two kinds of uncertainties and therefore there is a need of to each possible output of a random experiment that
combining the classical set theory and statistical models intend to model situations that combine fuzziness and
along with fuzzy sets theory [6-9]. For example, consider randomness [15-19].

from selecting the random sample instead of considering
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Despite of excellences of fuzzy sets in describing of the LR-FRV class with Normal distribution is practically
imprecise data, fuzzy arithmetic is accompanying with
difficulties and complexities that may decrease utility of
them.  Computational  efficiency is a particular importance
when fuzzy set theory is used to solve real problems [5].
Concerning these problems, Dubois and Prade [20]
introduced a flexible parametric family of membership
functions which are called LR family. Using this family,
computational efficiency increases without limiting the
generality beyond acceptable limits [5].

Therefore simulation of FRVs is necessary and
essential in checking the results validity and comparing
and modelling of various real situations. Colubi et al. [7]
simulated different types of FRVs to get some
conclusions concerning fuzzy-valued random variables.
They considered only fuzzy random variables with a range
that contained in some restrictive parametric classes.
González-Rodríguez et al. [4] represented two different
approaches based on the concept of support functions to
simulate FRVs. The first one makes use of techniques for
simulating Hilbert space-valued random elements and
then projected on the cone of all fuzzy sets. Several
empirical results showed the practicability of this
approach is limited. Another approach imitates the
representation of every element of a separable Hilbert
space in terms of an orthonormal basis directly on the
space of fuzzy sets.

The approach which is based on support functions
has a very good control on the simulation and the
generated FRVs exhibit a shape similar to their expected
value. However, simulation of the LR-FRV under a special
probability distribution has not been investigated in
earlier works. LR fuzzy random variables introduce distinct
pattern and easy fuzzy arithmetic properties with respect
to the other types. In addition the most of phenomena
follow the Normal distribution or can be easily
transformed  into  it. Therefore in this study the simulation

performed and some numerical examples are included to
show the behaviour and validity of it.

In section 2, the preliminaries of the fuzzy sets are
briefly  mentioned.  The  concept  of  FRVs  and
respective theorems and definitions are presented in
section   3.  A    simulation   method   based   on  the
support  function  and alpha cuts for LR-FRVs with
Normal  distribution  is   explained   in    section 4.
Section 5 illustrates the proposed approach with
numerical examples and finally, concluding remarks make
up the last section.

Preliminaries: Throughout the whole paper, the family
F( ) of all fuzzy sets in , defined by

is considered. Thereby K ( ) denotes the class of allc

nonempty compact convex subsets of . The Set
is the –cut or –level or worthy set of 

[21] and the interval , is called the support

of the fuzzy set , The family of all fuzzy sets with
compact support is denoted by F ( ).C

Support function of a crisp set A  is defined asp

S (u) = {sup u, a |a A, u S }, where .,.  is the innerA
p 1

product of the Euclidean space  and S  is the (p–1)-p p 1

dimensional unit sphere of . Now whereas –level ofp

the fuzzy set  is a crisp set [21], so the support function
of the convex –cut of the fuzzy set  for any fixed u
S  and for all  [0,1] is defined asp 1

.

A metric on the set of all normal compact convex
fuzzy subsets of , is defined by the L -metric on thep

2

space of lebesgue integrable functions as bellow

where L denotes the normed lebesgue measure on unit sphere S . Also a norm is defined as p 1

.
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Fuzzy Random Variables: Fuzzy random variables are measurable functions from a probability space to the set of fuzzy
variables in Banach space that conceptualized by Puri and Ralescu [2]. In this work, simulation of FVRs in real space is
studied. Therefore definition of FRV in  by González-Rodríguez et al. [4] is considered.

Definition 1: A fuzzy random variable  on a probability space ( ,A,P) is a F( ) valued mapping on  which is
measurable with respect to the metric d  (i.e. measurable with respect to the Borel -field generated by d ). Which for all2 2

 [0,1], the mapping X : K ( ) is a compact random set [4].C

Nevertheless, in order to make the simulation process practical, the following proposition is used:

Proposition 1: Every  is a fuzzy random variable, if and only if  and  are random variables for all  [0,1],
[10, 22].

Where  and  are denoted the minimum and maximum of , respectively.
Dubois and Prade [20] presented fuzzy numbers in a new format namely LR fuzzy numbers. In this way, the LR-FRVs

are the most common class of FRVs, which are very varied in their shapes and have great utility to use, because of
distinct pattern and easy fuzzy arithmetic. Furthermore, this family allows us to express every FRV in terms of three or
four random variables, namely, “the center”, “1/2 the core length”, “the left spread” and “the right spread” [23]. Thus,
we study the general approach proposed by González-Rodríguez et al. [4] in the format of LR-FRV class as a special case
that is very applicable. Definition of LR-FRV is presented as below [8, 24]:

Definition 2: An LR-FRV denoted by , has a membership function as:

where c (the central value) is a square integrable random variable, s(1/2 the core length), l and r(the left and right spread,
respectively), are three positive square integrable random variables and c, s, l and r are independent. L and R are fixed
functions that satisfied:

L and R are left-continuous and non-increasing functions and are mapping  [0,1].+

L(0) = R(0) = 1 and L(1) = R(1) = 0.
x > 0 L(x)<1, R(x)<1.
x > 0 L(x)>1, R(x)>1.

The expectation of an FRV is shown uniquely with a fuzzy set [17], while the variance of an FRV is determined in
two different approaches which are crisp and fuzzy set valued [25, 26]. In this study, a crisp variance for the FRV is
assumed. When it is attempted to simulate the FRVs for using in a special problem, such as validation of results or
empirical checking for theoretical subjects, often a particular distribution with known mean and variance is considered.
Therefore following theorems are presented to use in the simulation process.

Theorem 1: The expected value of the LR-FRV, , is the LR fuzzy set and is denoted by [24]:

(1)
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Theorem 2: Let  is the LR-FRV, then the crisp variance of  follows:

(2)

where  and  [24].

Proposition 2: The variance of a trapezoidal LR-FRV, as a special case, when L(x)= R(x)=1-x is determined by

(3)

and if P(s = 0) = 1, then 

Proof: It is clear that . If L(x) = R(x) = 1 – x, then L ( ) = R ( ) = 1 –  and1 1

 as well as . Thus Eq. (3) is obtained. 

Gaussian LR-FRV is considered in this study, therefore its definition presented in the following. Puri and Ralescu
[27] introduced the concept of a Gaussian FRV with value in the set of all Lipschitz fuzzy numbers on . Definition ofp

Gaussian FRV is [27]:

Definition 3: Fuzzy random variable  is Normal, if  is a Gaussian random element of , the

Banach space of continues functions.
On the other hands, Wu [22] defined probability distribution for an FRV with fuzzy parameters as bellow:

Definition 4: Let X be a random variable having distribution with parameters ,...,  and  be a fuzzy random variable.1 n

Then  and  are random variables for all  [0,1]. Fuzzy random variable  is said to have the same distribution
as X with fuzzy parameters , if for all  [0,1],  and  has a same distribution as X with parameters
and  respectively.

As a result of above definition,  is normally distributed with fuzzy parameters  and  if and only if
 and  for all  [0,1], [10, 22]. If a crisp variance is assumed, then , if and only

if  and  for all  [0,1].

Claim 1: Definition 3 in  and definition 4 in the case of Normal distribution are equivalent.

Proof: Def. 3 to Def. 4
Let  is an FRV which is Normal. The unit sphere in  follows S  = S  = {– 1,1}. In this case, the Support1–1 0

function of  is simplified as:

for all  [0,1]. Thus  and  are Normal for all  [0,1]. 

Def. 4 to Def. 3
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Fig. 1:  Fuzzy set B

Fig. 2: Components of a fuzzy set (a) the crisp numbers c, l and r, (b) the L and R functions.

Let  is a Normal FRV which  and  are Normal for all  [0,1]. Thus  is Normal .
Using proposition 1 and equivalency of two recent definitions, the method of simulation of LR-FRV with Normal

distribution, is presented in the next section.

Simulation Methods
Simulation of LR-FRVs: In order to describe the approach exactly, it is necessary to theoretically analyze the existence
of a (countable) “basis” for the family F ( ). It can be shown there exists an uncountable family, G, that can be regardedC

as a generator for F ( ), [4]. G = {B : [0,1]} is a family of FRVs that for every realization of the random variable C

[0,1], the result is the fuzzy set B  (Fig. 1), that its formula has been given by B  = I (x) + .I (x).{0} [0,1]

Whereas every fuzzy set , can be characterized uniquely with the family of their -levels [4], so an LR-FRV

can be generated with simulation of some arbitrary -cuts. For this purpose, the approach is begun with a simple (non-
stochastic) decomposition, then it is approximated these components in the selected -cuts. As is mentioned in the
previous section, any fuzzy set  can be written as [4, 24]:

(4)

where c is the central point of the purposed fuzzy set core and l and r are the left and right spread of it. Further c ,
l, r  are fixed scalar. L and R are the fixed fuzzy sets were introduced in Def. 2. The crisp numbers c, l, r and the L and+

R shape functions are shown in Fig. 2.
It can be shown [4]:

(5)

where X  and X  are two [0,1]-valued random variables. 1 – X  and 1 – X  are used as the random variable  which wasl r l r

mentioned in the G family. Further E(.) denotes the Aumann expectation of FRVs. Approximation of the shape functions
is subsequently performed.
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The [0, 1] interval should be divided to n parts, in which the value of n is equal to number of the -cuts. The
components of the given fuzzy set (function) will be simulated in these levels, where 0 =  <  <...<  = 1. These1 2 n

amounts will be regarded as the realizations of random variables X  and X . Then with considering cumulative distributionl r

functions of X  and X , following amounts are calculated as below:l r

(6)

Using the ’s and ’s, a proper approximate for Eq. (5) can be written as follows:

(7)

In this way, the connection of the shapes functions and distributions of random variable X  and X  is expressed inl r

the following proposition which was presented by González-Rodríguez et al. [4] without any proof.

Proposition 3: For every realization of X  and X , it holds:l r

(8)

Proof: The proof is presented by limit concept for the R function. A similar manner can be used for the L function. By
placing Eq. (6) into the Eq. (5), it can be written:

Every fuzzy set is specified with alpha levels uniquely; moreover every alpha cut of a fuzzy set in  is a crisp interval
that is identified with two its end points. Thus the end points of the R function alpha levels are written as following: (It
should be noticed that (B ) = 0 and max (B ) = 1 for all  [0,1])

By  tending  the  value  of  n  to  the  extreme,  the For example, triangular or trapezoidal FRV are used
exact solution is obtained. Thus, the amount of more than other shapes. The suitable distributions for X
cumulative   distribution    functions    of     X ,  in the and X  to simulate a triangular or trapezoidal FRV arer

point ,     is     equal     to    maximum    of    R   function found in following:
-cut  in the   level   1– .    In   this   way,   the

connection between  shape  functions  with the Claim 2: If the random variables X  and X  to be generated
distribution for  random   variables   X    and  X  is from the Uniform distribution on [0,1] then the simulatedl r

revealed. fuzzy sets are triangular or trapezoidal FRV in .

l

r

l r



( ) max( )1r
F RX = =−

( )
r

FX =

, [0,1]
iid

X X Ul r 

A

1 1. ( ) . ( )
l rX XA c l E B r E B− −= + − +

1 1
1 1

( ) ( )
i i

n n
l r

n i i
i i

A c B c B c− −
= =

= + − +∑ ∑

. 0 , . 0 , 1,...,l l r r
i i i ic l p c r p i n= ≥ = ≥ =

A

An

1 1
1 1

( ) ( ) ( ) ( ) ( ) ( )
i i

n n
rl

n i i
i i

E A E C B E C B E C− −
= =

= + − +∑ ∑

[ ), : 0,l rC Ci i Ω→ ∞

( )l lE C ci i= ( )r rE C ci i=

lpi
rpi

lci
rci

( ) [ )21 1, ,..., , ,..., : 0, nrl l r
n nY C C C C C= Ω → × ∞

, ,..., , ,...,1 1
r rl lc c c c cn n

 
 
 

( ) ( )1 11 1, ,..., , ,..., , ,..., , ,...,r rl l r l l r
n n n nE C C C C C c c c c c=

. , .l l l r r r
i i i i i iC z c C z c= =

Y

,...,1Y Y m Y

Aj

( ) ( ) ( )
1 1

1 11 1 1
, , , ; 2,...,

i i

l r l r
j j j i iA C C C C A A C C i n

−− − −
   = − + = + − =  

  

Aj

Aj

Middle-East J. Sci. Res., 15 (6): 768-779, 2013

774

Fig. 3: R(x)=1-x.

Proof: Trapezoidal and triangular FRV are a special cases
of LR-FRV family that occur when L(x) = R(x) = 1 – x. The
random variables X  and X  must be generated froml r

probability distribution which satisfies Eq. (8). If X  =  tor

be observed, then , (Fig. (3)). It means

X  must be selected from a distributions in whichr

, for every  [0,1] Thus in this case, the

Uniform distribution on [0,1] is suitable and .

Consequently, according to Eq. (5) the fuzzy set
can be rewritten as follows:

(9)

And in the same manner, it can be approximated by:

(10)

where

(11)

Typically, in a specific problem, simulation of an FRV
with particular distribution and special expectation is
considered. Thus the expected value of the purposed FRV
is selected as the fixed fuzzy set . Therefore the L and R
functions and the crisp numbers c, l and r are revealed.
According to Eq. (10) the expectation of the approximating
fuzzy set  is given by [4]:

where C:  and , are random variables

in which E(C) = c,  and , for i=1,...,n.

Based on this idea, the simulation of an LR-FRV is
proposed to do according to the following steps:

Step 1: Select the number n  sufficiently large and
determine the ’s where 0 =  <...<  = 1.i i n

Step 2: With considering the cumulative distribution
functions of X  and X , calculate the ’s and the ’sl r

values according to Eq. (6) and the ’s and the ’s
according to Eq. (11).

Step 3: Consider a (2n+1)-dimensional random vector

of coefficients for the ‘approximating’ given FRV as
random perturbation of  in such a way

that

holds. Afterwards, generate one realization of the random
variable C, in such a way E(C) = c. Further, generate n
realizations of each random variables Z  and Z , such thati r

E(Z ) = E(Z ) = 1. Consequently consider the randomi r

variables bellow:

now, the random vector , is ready to construct a fuzzy
set as the realization of preceding FRV.

Step 4: Repeat three previous steps for j = 1,...,m and
generate samples  of , then construct fuzzy sets

 by Eq. (12):

(12)

Eq. (12) represents the amount of the fuzzy set  in
its -cuts, so the fuzzy set  appears with connect these
points to each other. Clearly, the larger number n  will
result in better simulation. Although for the triangular or
trapezoidal LR-FRV that are most applicable, n=2 can be
sufficed for accuracy of the simulation process.
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Fig. 4: Fuzzy expected value (fat line), simulated
realizations (dotted line) and fuzzy sample means
(dash line), n=3.

Simulation of an LR-FRV with Normal Distribution:
Simulation of the Gaussian LR-FRV is presented in the
following:

Claim 3: If the random variables C, Z  and Z , to bel r

generated from a Normal distribution, then the simulated
fuzzy numbers are distributed as a Gaussian FRV.

Proof: According to Def. 3, if the support function of FRV
to be normally distributed then the simulated fuzzy
numbers are normally distributed too. Moreover,
according to equivalency of definition 3 and definition 4,
the simulated fuzzy numbers have a Normal distribution if
for all  [0,1],  and  be Normal. In the other
words, for simulating a Gaussian FRV, the central value
and the left and right spread of the LR-fuzzy sets must be
generated from Normal distribution. Therefore  will be
Normal and so  will be normally distributed. 

As was mentioned, in order to simulate the FRVs for
using in particular problem, often a special distribution
with known mean and variance is considered. Let the
simulation of FRVs with distribution as  is

necessary, where . For this purpose, the
random variable C must be generated from , where

c is the central point of the expected value core of the
purposed FRV. Moreover, the random variables Z  and Zl r

must be generated from  and ,

respectively. According to Eq. (3) the variance of
simulated fuzzy numbers, , is equal to . In2

this way, the central value and the left and right spread of
the simulated fuzzy numbers are normally distributed. As
a result, the support functions of simulated fuzzy numbers
follow the Normal distribution and according to Def. 3, the
simulated fuzzy numbers follow .

In the other case, let the simulation of FRVs with
distribution as  be desirable, where

 is a trapezoidal FRV. The simulation
process is followed as before unless the random variables
Z  and Z  must be generated as  for i=1; andl r

 and  for i=2. According to Eq. (3) the

variance of simulated fuzzy numbers, , is equal to2

. In this way, the central value and the left

and right spread of the simulated fuzzy numbers for all 
 [0,1] are normally distributed. Thereby the simulated

fuzzy numbers follow .

Numerical Examples: In order to show the treatment of
this approach some  numerical  examples  are  included.
The  simulation  method  for   triangular   FRV  with
Normal  distribution  is  illustrated   in  example 1.
Moreover examples 2 and 3 check the validity of the
method using d  metric. Examples use the simulated data2

which have been generated by SAS/IML programming
[28-33].

Example 1: The simulation of the LR-FRV is desired with
a distribution as , where  is the

triangular LR-FRV. According to Eq. (6) and Eq. (11) the
coefficients of step 2 are calculated. In addition ,

 and  are considered. Whereas, in this case

c=10, l=2 and r=1, so the random variables C, Z  and Z , arel r

generated from N(10, 4), N(1,2) and N(1,1) respectively.
Thus the simulated fuzzy numbers are Gaussian LR-FRVs
whit fuzzy mean  and crisp variance 4.5. Table 1 shows
the simulation results for three times.

Fuzzy set  is shown in Fig. 4 as well as simulated
realizations and fuzzy sample mean of them.

Example 2: Accuracy of this method is studied using d2

metric. In this case, the fuzzy set  in the example 1 is
simulated for some values of n, from 3 to 100'000 times.
The fuzzy set  and the fuzzy sample mean of simulated
fuzzy realizations are compared in each stage and are
shown in Fig. 5. The difference is too small for large
samples. Hence the distance between population
parameter and the sample mean is determined based on d2

metric to discern the difference clearly. These amounts are
available in Table 2.

As it is seen, the sample mean is matched to the
population mean from n=5000 with negligible difference.
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Table 1: Simulation of Gaussian LR FRV with fuzzy mean  and crisp variance 4.5.

i C (c, l, r) =(c-l, c, c+r)LR T

j=1 1 0 8.8 0 (8.8, 2.1, 0.9) =(6.7, 8.8, 9.7)LR T

2 2.1 0.9
j=2 1 0 13 0 (13, 4.3, 2.4) =(8.7, 13, 15.4)LR T

2 4.3 2.4
j=3 1 0 11.3 0 (11.3, 1.4, 1.7) =(9.9, 11.3, 13)LR T

2 1.4 1.7

Table 2: The distance between fuzzy population parameter and fuzzy sample mean based on d  metric2

n 3 10 50 100 200 500 1000 5000 20'000 100'000

d 1.109 0.966 0.118 0.269 0.132 0.137 0.12 0.064 0.096 0.0572

Table 3: The distance between fuzzy population parameter and fuzzy sample mean based on d  metric2

n 5 10 25 50 100 500 1000 10000

d 0.992 0.404 0.937 0.2 0.163 0.082 0.135 0.042

Fig. 5: Comparison between fuzzy expected value (fat line) and fuzzy sample mean (dash line)
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Fig. 6: Comparison between fuzzy expected value (fat line) and fuzzy sample mean (dash line)

Example 3: The simulation of the LR-FRV with a shows the comparison between the fuzzy parameter
distribution as  is considered where and the fuzzy sample mean of simulated fuzzy realizations.

 is of the trapezoidal FRV type. It should be

noticed that the core of a trapezoidal FRV is an interval
instead of a scalar. Hence the values of  and  are

equal to 1. In addition , ,  and

 are desired. The simulation process is performed

for some values of n, from 5 to 10'000 times. Figure 6

Based on d  metric, the distance between population2

parameter and the sample mean is determined in order to
clearly discern of the difference. These amounts are
available in Table 4.

In both recent examples, the sample means moves
towards the population parameter by growing the sample
size. Thereby the method generates the valid data
according to the goal.
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Concluding Remarks: Simulation of LR-FRVs with 9. Shapiro, A.F., 2009. Fuzzy Random Variables,
Normal distribution was studied because of their Mathematics and Economics, 44: 307-314.
applications. Typically in LR family, triangular or 10. Chachi, J. and S.M., Taheri, 2011. Fuzzy confidence
trapezoidal FRV are used more than other shapes. Suitable intervals for mean of Gaussian fuzzy random
distributions for random variables X  and X  was found, till variables,   Expert     Systems     with   Applications,l r

the simulated fuzzy numbers to be had 38: 5240-5244.
triangular/trapezoidal and arcuate shapes. 11. Féron, R., 1976. Ensembles Aléatoires Flous, C.R.

Some numerical examples were included to indicate Academic Science Paris Ser. A, 282: 903-906.
the treatment of this approach, using the simulated data 12. Kwakernaak, H., 1978. Fuzzy Random Variables - I.
which have been generated by SAS/IML programming. definitions  and   Theorems,  Information  Sciences,
The simulation methods for triangular and trapezoidal FRV 15: 1-29.
with Normal distribution are discussed. Further in order to 13. Kruse, R. and K.D. Meyer, 1987. Statistics with Vague
study the accuracy and validity of the method, the fuzzy Data, Reidel Publication, Dordrecht.
parameter of the population mean was compared with the 14. Diamond, P. and P. Kloeden, 1994. Metric Spaces of
fuzzy sample mean in some different sample size. For this Fuzzy Sets, World Scientific, Singapur.
purpose, d  metric was used and it was shown the sample 15. Krätschmer, V., 2001. A unified approach to fuzzy-2

mean moves towards the population parameter with random-variables., Fuzzy Sets and Systems 123: 1-9.
growing the sample size. It means that the simulation 16. Gil, M.Á., M. López-Díaz and D.A. Ralescu, 2006.
method operates accurately and generates the valid data Overview on the development of fuzzy random
according to the target. variables, Fuzzy Sets and Systems, 157: 2546-2557.
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