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Abstract: Uniaxial Compressive Strength (UCS) is the most important rock parameter required and determined
for rock mechanical studies in most civil and mining projects. In this study, two soft computing approaches,
which are known as neuro-fuzzy inference system (ANFIS) and Genetic Programming (GP), are used in strength
prediction of uniaxial compressive strength (UCS). Block Punch Index (BPI), porosity (n), P-wave velocity (Vp),
Density ( ) were used as inputs for both methods and were analyzed to obtain training and testing data. Of all
130 data sets, the training and testing sets consisted of randomly selected 110 and 20 sets,  respectively.
Results showed that the ANFIS and GP models are capable of accurately predicting the uniaxial compressive
strength (UCS) used in the training and testing phase of the study. The GP model results better prediction
compared to ANFIS model.
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INTRODUCTION with uniaxial compressive strength tests. Despite some

Measures and estimates of Uniaxial Compressive judgment, can provide initial estimates of rock properties,
Strength (UCS) of rock materials are widely used in rock required at the feasibility and design stage [12, 13].
engineering, they are important for intact rock Traditionally, statistical methods used in rock
classification and rock failure criteria. In addition, engineering, such as simple and multiple regression
analytical   and    numerical    solutions    require  UCS. techniques are employed to establish predictive models
The procedure for measuring this parameter has been [14]. In recent years, new techniques such as genetic
standardized by both the American Society for Testing programming and fuzzy inference systems have been
and Materials (ASTM) and the International Society for employed for developing predictive models to estimate
Rock Mechanics (ISRM). High-quality core samples are the required parameters [15-22]. (Baykasog and etal) used
needed for the application of UCS test in laboratories; a genetic programming to predict uniaxial compressive
careful execution of this test is very difficult, time strength (UCS) for limestone and It is figured out that
consuming, expensive  and  involves  destructive  tests. genetic programming techniques are able to provide good
In order to overcome these difficulties, encountered prediction equations for strength prediction.
during core sample preparation and execution of these The objective of this study is to investigate the
tests, some predictive models considering simple index usability of neuro-fuzzy inference system (ANFIS) and
parameters  such  as  Schmidt  hammer, point load index, genetic programming (GP) in predicting the uniaxial
P-wave velocity and physical properties were developed compressive strength (UCS) by use five rock types and
by many investigators [1-11], because these indexes test make comparison of prediction levels between developed
require a relatively small number of samples, are quick and models by using the related prediction values and results.
easy to execute, with portability and low costs, compared The ANFIS  and  GP  approaches  were  used  to  predict

deficiencies, index tests, when coupled with experienced
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Table1: Basic descriptive statistics of the established dataset according to the rock type.
(gr/cm ) n(%) V (km/s) BPI UCS(MPa)2

z

Rock Case ---------------------------------------- --------------------------------- ----------------------------------- -------------------------------------- -------------------------------
Type # Max ± Min Max ± Min Max ± Min Max ± Min Max ± Min
limestone 26 2.72 2.610.08 2.45 4.91 2.141.5 0.29 49.83 38.616.13 25.87 33.01 2.266.48 12.16 173.76 96.2532.31 34.78
Andesite 26 2.72 2.600.09 2.35 16.87 7.054.83 0.29 49.83 31.687.89 16.69 38.1 2.0511.1 3.01 173.76 53.0140.32 9.5
Hornfels 26 2.81 2.750.02 2.68 1.2 0.430.25 0.09 57.76 43.212.51 37.93 58.36 31.4313.6 11.85 335.82 264.755.96 133.58
Sandstone 26 2.82 2.230.25 1.7 37.69 17.918.8 6.51 52.02 32.956.57 21.56 10.99 3.192.7 0.27 99.72 39.329.12 5.33
Travertine 26 2.53 2.040.06 2.27 14.21 9.033.61 3.12 53.15 49.762.14 44.29 20.82 11.444.04 4.96 99.72 52.8319.00 23.26

± refers to average values with standard deviation

the uniaxial compressive strength (UCS). Complex based on fitness and then applying the following primary
relationship between the parameters affecting the UCS operations:
can be easily modeled by use ANFIS and GP approach
unlike statistical models. Experimental UCS data were Reproduction: Copy an existing program to the new
collected from various samples to be included in training population.
and testing phase of ANFIS and GP approaches. Crossover: Create new computer programs by

Experimental Study and Test Results: In this study, a Mutation: Create new computer programs by
dataset generated by Saedi (2006) were used for mutation.
constructing the neuro network for prediction of uniaxial Choose an architecture-altering operation to one
compressive strength. Various types of rock cores selected program.
including Limestone, Hornfels, Travertine andesite and The single best computer program in the population
Sandstone were gathered from different mine sites in Iran. produced during the run (best solution so far) is
A reliable predictive model requires a sufficiently large designated as the result  of  genetic  programming
number of high-quality data. For this purpose 10 block [23-25].
samples were collected from the mine sites and 130 sample
sets were obtained for rock mechanical tests. Followings GP Model Development: An aim of this study is to obtain
the core retrieving, rock samples were prepared and some an explicit formulation for Uniaxial Compressive Strength
related laboratory rock tests such as Block Punch (UCS) using genetic programming based on experimental
Index(BPI), porosity (n), P-wave velocity (Vp), Density results. Details of the experimental procedure have been
( ), uniaxial compressive strength (UCS) were carried out explained in Section 2. The details of the experimental
in accordance with ISRM. The basic descriptive  statistics database including the parameters and their range are
of the dataset according to the rock type and data are presented in Table 2. To achieve generalization capacity
summarized in Table 1. for the formulations, the experimental database is divided

Genetic Programming: Koza [12] proposed genetic are based on training sets and are further tested by test
programming (GP) technique which is an extension to set  values   to  measure  their  generalization  capability.
Genetic algorithms. In genetic  programming,  populations In the literature, this type of studies includes test sets as
of hundreds or thousands of computer programs are 20–30% of the training set. The patterns used in testing
genetically bred. This breeding is done using the and training sets are selected randomly. Among the
Darwinian principle of survival and reproduction of the experimental data, 110 sets were used for GP training and
fittest along with a genetic recombination (crossover) 20 sets for GP testing. Parameters of the GP models are
operation appropriate for mating computer programs [23]. presented in Table 3. The purpose of this section is to
GP breeds computer programs to solve problems by obtain the explicit formulation of Uniaxial Compressive
executing the following three steps: (1) Generate an initial Strength (UCS) as a function of Block Punch Index(BPI),
population of random computer programs composed of porosity (n), P-wave velocity (Vp), Density ( ). Explicit
the primitive functions and terminals of the problem. (2) formulations based on GP for UCS was obtained as a
Iteratively perform the following sub-steps until the function of experimental parameters as
termination criterion is satisfied: (a) Execute each problem
in the population so that a fitness measure indicating how UCS = f(BPI, n, v , )
well the program solves the problem can be computed for
the program. (b) Create a new population of programs by (Fig. 1) shows the expression tree of GP models,
selecting programs in the population with a probability whose explicit formulation is:

crossover.

into two sets as training and test sets. The formulations

p
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Table 2: Parameters of the GP model
Population size 50
Maximum number of evaluated individuals 1000
Maximum depth 14
Reproduction 0.1
Initial prob stype fixed
Num back gen 3
Probability of crossover 0.02
Probability of mutation 0.97
Percent change 0.25
Function set +, -, *, /, power, exp, ln(x),

log, p, X , X , (1/X).2 3

Table 3: Variables used in model construction.
Variables Code Range
Density X1 1.72-2.82
Porosity X2 0.09-37.69
Wave Length X3 1669.84-5776.21
Box-Punch Index X4 0.27-58.36
UCS - 5.33-335.82

Fig. 1: Expression Tree

It should be noted that proposed GP formulations in
Eq. (1) is valid for the ranges of training set  given in
Table 3.

Neuro-Fuzzy Inference System (ANFIS): In classical set
theory, there is a crisp definition as to whether a variable
belongs to a set or not. However, the fuzzy theory
introduced by Zadeh [26] does not give a sharp answer to
questions. In this approach, the belongings of a variable
to different sets are defined partially by continuous
membership functions that vary between 0 and 1 [27, 28].
Mamdani  and  Tagagi–Sugeno  (TS) models are two
types  of  fuzzy  approach  commonly-used  [29]. The main

difference between these approaches is that Mamdani
model uses the human expertise and linguistic knowledge
to design the membership functions and if–then rules
whereas TS model uses optimization and adaptive
techniques to establish the system modeling and also
uses less number of rules. TS model preferred mostly for
mathematical analysis and its computational efficiency
seems to be more advantageous than Mamdani model
[30]. Also, the output membership function in TS model is
simply designed as either linear or constant [31]. Jang [32]
proposed a new fuzzy logic model called ANFIS which
uses learning and parallelism properties of artificial neural
network (ANN). Fuzzy rules and membership functions
are also generated adaptively by neural training process
using given data set. So, ANFIS employs method of grid
partitioning and subtractive clustering [33-35]. First-order
Sugeno type fuzzy inference system is used for linear
function and zero-order Sugeno type fuzzy inference
system is used for constant function. A typical two if then
rules used in first-order Sugeno type is given in the
following form:

If x = A  and y = B  then f  = p x+ q y + k (2)1 1 1(x,y) 1 1 1

If x = A  and y = B  then f  = p x+ q y + k (2)2 2 2(x,y) 2 2 2

where x(or y) is ith input node, p,q and k are training
parameters, A and B are fuzzy membership function labels.

The membership function is updated by
backpropagation learning algorithm [36, 37]. The basic
structure of an ANFIS model is shown in (Fig. 2). As can
be seen there are five layers in which the mathematical
computations are performed. The mathematical
computations in fuzzy approach are performed in five
stages. The value of the ith node of the first stage is
computed as below;

U  = A (x) for I = 1,2 or (4)1,i i

U  = B (x) for i = 3,4 (5)1,i i–2

where  is the membership function.
In second stage, the nodes are represented as the fire

strength of the rule and the output U  which is the2,i

product of the incoming signals is computed as follow;

U  = w  = = A (x) B (y), i = 1,2 (6)2,i i i i
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Fig. 2: First order TS model reasoning and basic ANFIS architecture [36].

In third stage, the normalized firing strengths which used as the  stopping  criterion  to  avoid  over  fitting.
shows the ratio of the ith rule’s firing strength versus all The  ANFIS  model  has  80  linear parameters, 24
rule’s firing strength are computed by following equation; nonlinear  parameters,  55  nodes  and  16  fuzzy  rules.

development.
(7)

The subsequent stage performs a calculation for
determination of the contribution of the ith rule to output; In this study, it was basically aimed to explore the

(8) UCS value of some rocks that have great significance for

 indicates the normalized firing strength found from comparatively presents the analyses results obtained from
layer 3, p , q  and k  are the consequent parameters. In last these approaches and quantitative assessments of thei i i

stage, the final output of the ANFIS is computed by model’s predictive abilities. Of the 130 data sets, 110 were
following the equation; used for training the models and 20 which are not used in

In order to find out how accurate the results of the
(9) developed models are, a statistical verification criteria was

Development of ANFIS Model: ANFIS model was Table 4 the comparisons between GP and ANFIS indicate
developed using identical inputs for as in GP, for that the best results in terms of the R value generated
generation  of  the  membership   functions  associated from  the GP  analyses  that  are  shown  in  (Fig.  3,  4)
with each input variable, the grid partition method was This implies that GP models produce good performance.
employed for ANFIS model. In the model, the Gaussian In statistics, the overall error performances of the
membership  function  was  assigned.  The  hybrid relationship between two groups can be interpreted from
learning  algorithm  was used for optimizing the the R values. According to Smith (1986), if a proposed
parameters  allows  a  fast  identification  of parameters model gives R > 0.8, there is a strong correlation between
and substantially reduces the time  needed  to  reach measured and predicted values overall the data available
convergence   [38].  The  minimum  validation  error is in the database.

The MATLAB Software was used for the models

RESULTS AND DISCUSSION

applicability of the GP and ANFIS for prediction of the

rock mechanics and foundation engineering. This section

training stage were presented for testing of  the  models.

utilized as coefficient of correlation (R). As can be seen in



R=0.96
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Table 4: Coefficients of correlation obtained for the predictions made by
ANFIS and GP

UCS R
GP 0.96
ANFIS 0.87

Fig. 3: Predicted UCS by ABFIS model vs. measured UCS
for testing set.

Fig. 4: Predicted UCS by GP model vs. measured UCS for
testing set.

CONCLUSIONS

This study demonstrates the efficiency of GP and
ANFIS models to predict UCS. The developed models
were able to predict the UCS for Block Punch Index(BPI),
porosity (n), P-wave velocity (Vp), Density ( ) used in
training and testing processes. Predicting of UCS as a
function of parameters is a difficult task to achieve.
However, a successfully trained GP and ANFIS models
can predict the UCS easily and accurately. So, the GP and
ANFIS models can be a powerful alternative approach to
traditional statistical methods used in developing the
relationship between the UCS and the parameters
affecting it. Although the performance of the developed
GP and ANFIS models is limited to the range of input  data

used in training process, the model can easily be retrained
to expand the range of input variables by providing
additional new set of data. GP and ANFIS models also
have the minimum degree of scatter and maximum ability
of trend capture compared to other equations. But as
mentioned in section five, the GP model in the paper
results better  prediction  compared  to  ANFIS  model.
We believe that genetic programming based techniques
will gain much more popularity for strength prediction
applications in the literature and applications in the future.
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