Middle-East Journal of Scientific Research 15 (10): 1411-1414, 2013

ISSN 1990-9233

© IDOSI Publications, 2013

DOI: 10.5829/idosi.mejsr.2013.15.10.11089

Comparative Analysis of Linear and Grafted Polynomial Functions in Forecasting Sorghum Production Trend in Nigeria

¹G.M. Bivan, ²L.O. Akhilomen, ³A.J. Augustine and ⁴S.A. Rahman

Abstract: In agriculture, ex-post and ex-ante forecasts of outputs and market prices, as well as other economic times series data beyond certain periods, cannot be determined with certainty. This paper investigates the performance of linear and grafted polynomial functions in forecasting sorghum production in Nigeria, when the model depends just on the trend. Data were obtained from the Statistical Bulletin of the Central Bank of Nigeria to observe trend in sorghum production from 1970 through 2007. A rough graphical representation indicates that sorghum production did not relate linearly to trend over the entire sample period. A three-time segments function was therefore suggested and estimated after grafting. The resulting mean (grafted) function provided more reliable ex-post forecasts of sorghum production than those yielded from merely fitting a linear function to the data used.

Key words: Linear • Grafted Polynomial • Ex-post • Ex-ante • Sorghum

INTRODUCTION

The forecasting of time series has always been a problem as a result of lack of a functional approach to capture the paucity in available data. For information to be more meaningful and useful for policy making there is need for analysis to refine and summarize the information, hence, the estimation of models to forecast the probable future values of an economic time series is one of the econometric methods of information management [1]. In the past, several studies have utilized models to predict future levels of economic time series. For example, [2] forecasted cotton production in Nigeria using grafted function (Quadratic-Quadratic-Linear) which provided more reliable ex-post forecasts than merely fitting a linear function to the data used. In a related study, [1] forecasted maize production in Nigeria using grafted function (Linear-Quadratic-Linear) which also provided more reliable ex-post forecasts than merely fitting a linear function to the data used. In their study, [3] concluded that there was no universality as to which Spline (grafted) model is appropriate, rather all possible models should be tried and the one that gives the most consistent result when compared to observe data and other factors should be used.

In developing countries like Nigeria, inadequate information on the determinants of an economic time series and the absence of capable statistical routines, have often limited the choice of predictive models [2]. These conditions have necessitated the forecasting of key economic time series (supply, demand, prices, etc) on trend, using variants of the linear model [1].

Some economic time series might exhibit linear relationships over an entire sample period while others may not. This paper therefore, investigates the performance of linear and grafted polynomial functions in forecasting sorghum production in Nigeria, when the model depends just on the trend.

MATERIALS AND METHODS

Data Collection: The data used were obtained from the Statistical Bulletin of the Central Bank of Nigeria to observe sorghum production trend in Nigeria from 1970 through 2007 (See Appendix C).

Forecasting Model: The general form of the linear trend model may be represented as follows:

$$Y = a + bt (1)$$

Where 'a' and 'b' are structural coefficients, 't' is the trend variable and 'Y' is the level of sorghum production. A rough graphical representation of Y however indicates that the observed time series did not relate linearly to trend 't' over the entire sample period. Then equation (1) has to be improved upon by dividing the available time into segments and using different functional forms for the segments.

The preliminary graphical representation of this time series indicated three time segments and the following trend functions were suggested:

$$Y = a_0 + a_1 t$$
, for $1970 \le t \le 1981$ (2)

$$Y = b_0 + b_1 t + b_2 t^2 \text{ for } 1981 \le t \le 1993$$
 (3)

$$Y = c_0 + c_1 t$$
, for $t > 1993$ (4)

In equations (2) - (4), the a's, b's and c's are the structural coefficients, while t and Y are as defined in equation (1).

For purposes of forecasting the time series into the immediate future, it is customary to assume a linear trend relation in the terminal segment [1, 2, 4, 6, 7], that is, equation (4). The aim is to obtain mean function which embodies all the key local trends observed in the time series Y. This mean function must be continuous, linear in the structural coefficients and differentiable at the joints of the pairs of trend functions [1, 2, 4, 6, 7]. In short, it is desired that the following restrictions hold over the domain of the mean function:

$$a_0 + a_1 k_1 = b_1 + b_1 k_1 + b_2 k^2$$
 (5)

$$b_0 + b_1 k_2 + b_2 k_2^2 = c_0 + c_1 k_2 \tag{6}$$

$$a_1 = b_1 + 2b_2k_1 \tag{7}$$

$$b_1 + 2b_2k_2 = c_1 \tag{8}$$

where the k's are the joints of the segmented functions. In this study, $k_1 = 1981$ and $k_2 = 1993$. There are seven (7) structural parameters and four (4) restrictions on the mean function. This means that only 3 parameters can be estimated. In general, which of 7 structural parameters are estimated (or eliminated) depends on the purpose of formulating the mean function. According to [1, 2, 4, 6, 7], where the goal is to forecast, it is important to retain the coefficients in the terminal (usually linear) trend function. Thus, parameters c_0 , c_1 and b_2 have been retained for subsequent estimation. This decision resulted to the following solutions (see Appendix A for details):

$$a_o = c_o + b_2(k_2^2 - k_1^2)$$
 (9)

$$a_1 = c_1 - 2b_2(k_2 - k_1) \tag{10}$$

$$b_0 = c_0 + b_2 k_2 \tag{11}$$

$$b_1 = c_1 + 2b_2 k_2 \tag{12}$$

The mean function required for the forecasts is obtained by substituting (see Appendix B) for a_1 , b_0 and b_1 in equations (2) - (4). The resulting mean function estimated is:

$$Y = c_0 X_0 + c_1 X_1 + b_2 X_2$$
 (13)

where,

$$X_0 = 1$$
 for all t

$$X_1 = t$$
 for all t

$$X_2 = [k_2^2 - k_1^2 - 2(k_2 - k_1)t]$$
 for all $t \le k_1$
= $(t - k_2)^2$ for $k_1 \le t \le k_2$

Equation (13) is now a continuous mean function, given the set of restriction in equations (5) - (8). Adopting the ordinary least squares technique [1, 2, 3, 4, 5, 6, 7 and 8], equations (1) and (13) were each estimated, based on the observed time series on sorghum production in Nigeria from 1970 to 2007. The data for the 1998 – 2007 sub-periods were retained for the ex-post evaluation of the estimated equations.

Table 1: Estimates of the Structural Parameters for Linear and Grafted Functions

Variables	Linear Function	Grafted Function
Intercept	-442215.353*	-681667.288*
	(-14.946)	(-14.320)
X_1	225.362*	345.210*
	(15.147)	(14.474)
X_2		11.276*
		(5.651)
Adjusted R ²	0.861	0.897
d.f	37	38

Notes: Figures in parentheses are the computed t-values

Table 2: Ex-post Forecasts of Sorghum Production in Nigeria, 1998-2007 (*000 tonnes)

	Observed	Forecasts using	Forecasts using
Year	Sorghum Production	Linear Function	Grafted Function
1998	8401	8057.5	8063.09
1999	8504	8282.8	8408.3
2000	8824	8508.2	8753.51
2001	8365.4	8733.6	9098.72
2002	8712.1	8958.9	9443.93
2003	9460.8	9184.3	9789.14
2004	9994.4	9409.7	10134.35
2005	10593.6	9635	10479.56
2006	11234.8	9860.4	10824.77
2007	11769.6	10085.7	11169.98

RESULTS AND DISCUSSION

The structural coefficients for equations (1) and (13) are presented in Table 1. Equation (1) was estimated for the purpose of evaluating the predictive performance of equation (13). The estimates of the coefficients on X_1 and X_2 are significant at the 1 percent probability level.

The estimates of the linear and grafted functions in Table 1 were utilized to obtain ex-post forecasts of sorghum production in Nigeria.

Table 2 presents the numerical ex-post forecasts of sorghum production in Nigeria over 1998 - 2007 sub-period, based on the linear and grafted models. The data corresponding to this sub-period was excluded from the regression analysis for evaluating the predictive performance of the grafted function. The ex-post forecasts suggest that the grafted function provides more reliable predictions of the sorghum production during the indicated sub-period.

Appendix A: The summary of the derived expressions in coefficients a_0 , a_1 , b_0 and b_1 are already presented in the text as equation (9) - (12). From equations (5) - (8) in the text, it seems easiest to start the derivation with equation (8) and make b_1 the subject of the expression as:

$$b_1 = c_1 - 2b_2k_2 \tag{A1}$$

Equation (A1) can be used to eliminate b_1 from equation (7) and then solved to obtain an expression in terms of a_1 as:

$$a_1 = c_1 - 2b_2(k_2 - k_1) \tag{A2}$$

Equation (A2) can be used to eliminate b_0 in equation (6). Then, the resulting equation can be expressed in terms of b_0 as follows:

$$b_0 = c_0 + b_2 k_2^2 \tag{A3}$$

The expressions obtained above for b_1 , a_1 and b_0 can be substituted in equation (5) and rearranged to get an expression in terms of a_0 as:

$$a_0 = c_0 + b_2(k_2^2 - k_1^2) \tag{A4}$$

Appendix B: The mean function which was equation (13) in the text was derived simply by substituting for coefficients a_0 , a_1 , b_0 and b_1 as they appear in equations (2) – (4). For equation (2), $t \le k_1$, coefficients a_0 and a_1 were substituted for, using equations (9) and (10) to get:

$$Y = c_0 + c_1 t + b_2 [k_2^2 - k_1^2 - 2(k_2 - k_1)t]$$
(B1)

In equation (3), $k_1 \le t \le k_2$, coefficients b_0 and b_1 were substituted for, using equation (11) and (2) to obtain:

$$Y = c_0 + c_1 t + b_2 (t - k_2)^2$$
 (B2)

And in equation (4), $t > k_2$, coefficients c_0 and c_1 were retained for forecasting purposes. The equation remains:

$$Y = c_0 + c_1 t \tag{B3}$$

The mean function equation (equation 13) in the text was formed from the above equations.

CONCLUSION

The sorghum production trend predicted with the grafted function is closer to the observed trend when compared to that of the linear function because it resulted in smaller differences. This is because the grafted function incorporated the major observed local trends in the forecasting framework. This kind of forecasting technique may be useful for policy making in planning for future

^{*}Significant at 1 percent level of probability

crop production based on the available information of the past periods.

REFERENCES

- Rahman, S.A., 2001. The use of Grafted Polynomial Function in Forecasting Maize Production Trend in Nigeria. Nigerian Journal of Biological Sciences, 1(1): 69-73.
- Philip, D.O.A., 1990. Grafted Polynomials as Forecasting Functions: Application to Cotton Production in Nigeria. Savanna, 1: 103-108.
- Nmadu, J.N., E.S. Yisa and U.S. Mohammed, 2009.
 Spline Functions: Assessing their Forecasting Consistency with Changes in the Type of Model and Choice of Joint Points. Trends in Agricultural Economics, 2(1): 17-27.
- 4. Fuller, W.A., 1969. Grafted Polynomials as Approximating Functions. Australian Journal of Agricultural Economics, 13(01): 35-46.
- 5. Johnston, J., 1984. Econometric Methods. Third Edition, McGraw Hill, New York, USA, pp. 568.
- Akpan, I.P., I.M. Haruna and S.A. Rahman, 2005. Mathematical Models for the Forecasting of Sorghum Production in Nigeria. The Nigerian Journal of Research and Production, 6(1): 83-91.
- Akpan, I.P., I.M. Haruna and S.A. Rahman, 2007. Applying Grafted Polynomials to Forecast Groundnut Production in Nigeria. Journal of Research in Agriculture, 4(3): 73-77.
- 8. Alabi, O.O., A.F. Lawal and S. Omodona, 2008. Analysis of Supply Function for Sorghum in Kaduna and Kano States of Nigeria: An Application of Nerlove Adaptation Hypothesis and Grafted Polynomials Model. Nigerian Journal of Rural Economy and Society, 5: 35-41.

Appendix C: Sorghum Production in Nigeria ('000 tonnes)

S/No.	Year	Sorghum Output
1	1970	4053
2	1971	3794
3	1972	2298
4	1973	3125
5	1974	4738
6	1975	2920
7	1976	2950
8	1977	3286
9	1978	2409
10	1979	2604
11	1980	3346
12	1981	3364
13	1982	3740
14	1983	3292
15	1984	4608
16	1985	4911
17	1986	5455
18	1987	5455
19	1988	5182
20	1989	7265
21	1990	4185
22	1991	5367
23	1992	5909
24	1993	6051
25	1994	6197
26	1995	6997
27	1996	7514
28	1997	7954
29	1998	8401
30	1999	8504
31	2000	8824
32	2001	8365.4
33	2002	8712.1
34	2003	9460.8
34	2004	9994.4
36	2005	10593.6
37	2006	11234.8
38	2007	11769.6

Source: Central Bank of Nigeria Statistical Bulletin Volume 18, December 2007