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Abstract: Multi-processors are used for high performance scientific computing, where each processor is

assigned the same or different workload. Real-time systems are those systems that must complete the given

operation in the given time or deadline. A number of scheduling algorithms are proposed m the literature that

are optimal on uni-processor systems and are modified for scheduling over multi-processors. In this paper we
propose a new scheduling algorithm SC-WITH-DVFS for multi-processors having four properties. The first one

is that energy efficiency is cbtained by dynamically scaling the frequency of each processor. The 2* one is to
schedule the most important tasks first by reducing the drawback of RM and DM and 3™ one to extend the
concept of [1], for multi-processors the 4™ one is to use TL_PLANE and task splitting techniques for load
balancing to further enhance the power consumption. Proposed algorithm is verified for high efficiency for

multi-processor real-time systems using mathematical modeling and simulation results.
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INTRODUCTION

Real-time systems are paying attention on periodic
task models, in which tasks are released at habitual
time periods. On the other hand with maturity of
multiprocessor structural design, today most real-time
systems function in dynamic environment where human
activities (aperiodic tasks) are predictable. Aperiodic tasks
are to be completed as soon as possible; consequently
the priority assigned to such aperiodic tasks ought to be
higher than those of periodic tasks. Multiprocessor are
very promising from performance perspective, however
higher power consumption issues arises as a challenge
associated with such systems. Since these systems
generally remain under-utilized and the systems operate
at maximum speed throughout and thus becomes an
ideal candidate for power aware scheduling. In recent
times it is realized there is a need for energy reduction
m processors. And a lot of work has been done on
minimizing the energy reduction. When we reduce the
energy consumption then the response time is increased.
And it will degrade the performance of real time systems.
In multiprocessors the main issue 13 heating and energy.
Our goal 13 to mimmize the energy consumption so that

the cooling cost will be reduced. We are scheduling
periodic and aperiodic tasks such that the load is
balanced among different processors and the energy
consumption 1s reduced. Runtime power reduction
mechanisms can reduce the energy expenditure. For
energy reduction we can use the DVS in latest processors.
It means that power 1s a linear function of frequency 1.e.
f and a quadratic function of the voltage i.e. V given by
{p = fV'"). The voltage adjustment at an instant of time is
called DVS, which is an effective way for power saving in
current systems [1-4]. In addition to saving energy,
another advantage of having reduced power consumption
is lower cooling cost of the multiprocessing environment
(web farms, clusters etc). In recent processors the
relationship between frequency f and power p gives
foundation to Dynamic Voltage Scaling:

E=Pt )]

where E 1s energy consumed, t 1s time taken and P 1s
power consumed. The average power dissipation in
processor is:

Pmlg:Pc +P1+Psxdby+PSC (2)
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where P

caplr

standby and short circuit power. The P, and P, are

P, P, and Pg is capacitance, leakage,

immportant but they are least unportant as compared to
P, Sowe will net consider £, P, and Py Sothe P,
is equal to:
Pmpz - aCVd%f (3)
where « is the transition activity dependent parameter, C,
V;and fis switched capacitance, supply voltage and clock
frequency. Equation (3) shows that the supply voltage I,
18 quadratic as compared to clock frequency £ furthermore
it also shows that lowering the supply voltage would be
the most efficient way to reduce the power consumption.
But when ¥, 1s reduced then the circuit delay ¢, would be
increased:

=" 4
Vg =Vi)

Iy
where 1, 1s threshold voltage and m is a constant which
will depend on gate size and capacitance. As from
equation (4) the f and ¢, are inversely proportional, so it
would mean that the energy expenditure would be
reduced in CMOS devices at the expense of performance
delay. The frequency fis:

_ V-
Ky
Equation (5) shows that the clock frequency is

7 &)

directly proportional to supply voltage. If we would
consider © = P,,, then equation (3) can be written as:
P=aCVf ()
Equation (6) shows that when the clock speed f and

voltage changed then 1t would affect power
consumption linearly and quadratic ally, respectively.
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Multi-Processor Scheduling: The scheduling problem
has predominantly studied on a umniprocessor system,
which contains a single processing unit and all the jobs
must be executed in it. In multiprocessor system the tasks
must be executed on more than one processor. One of the
optimal scheduling algorithms for multiprocessor system
is Pfair scheduling. On the other hand, to assign the tasks
optimally to the processing unit is an NP-hard problem
[5-8]. As a result we must use the heuristics. The main
purpose of heuristics 1s to find out that all tasks should be
feasibly schedulable but is not responsible for the pledge
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allocation of tasks. Up to now, several heuristic
multiprocessing unit scheduling algorithms are suggested
and offered [9,8,10,11,12,3,13,5,6,14,2,15,16,17, 18,
19]. When the feasibility of the task 1s checked then
the communication overhead must also be considered.
For example, assume that a task cannot begin before
getting the output of another task. When the tasks are
executing on the same processor then the communication
overhead is zero. On the other hand when the tasks are
executing on the separate processing units, then the
communication overhead 1s greater and should be notified
when checking the allotment for feasibility. The following
postulations may be made, when someone is going to

design a multiprocessing unit scheduling algorithm:

The Preemption of Job Is Allowable or Not: When the
task is executing on a processor then it could be
preempted by some higher priority task and its execution
would be resumed later on. We suppose that there 15 no
penalty linked with such preemption.

The Migration of .Job I's Allowed or Not: The task that is
executing on any processor may be preempted by
another processor and can resume its execution on that
processor. And there is no penalty allied with such
migration.

The Job Parallelism Is Prohibited: That 1s, when the task
is executed it must execute on one processing unit at any
particular instant of time.

RM end DM are important scheduling algorithms for
real-time systems. RM and DM both are fixed priority
algorithms and give equal importance to each task, that
yields a major drawback of RM and DM. Tn case of RM,
RM assign a higher priority to the task having short
period due to which ummportance task having short
period is scheduled first from the importance tasks having
longer periods [20]. The same criteria is also implies to
deadline monotonic in which the scheduling criteria based
on its deadline, where a task having short deadline is
schedule first from those important tasks having longer
deadline. Tn [15] the authors have proposed a new
algorithm that can schedule the most important tasks first.
In [1] the authors have proposed the concept to
dynamically scaling the frequency of each processor
according to the current active tasks in the ready queue.
In this algorithm there 1s no concept for the important
tasks and unimportant tasks leading to starvation
problems.
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Proposed Solution: Scheduling of jobs optimally on
multi-processors [21-24] 15 a hot research 1ssue in
academia, research laboratories and industry. There 15 a
lot of work done for scheduling real-time tasks to
achieve energy efficiency m multi-processor environment.
In our algorithm SC-WITH-DVFS we have scheduled
most important tasks first that prevents the starvation
problem. We have also introduced the task splitting
concept to utilize each processor with equal worlkload.
The [15] proposed a new technique that eliminates
the drawback of both scheduling algorithm (RM and DM)
by introducing a priority component (PC), which is
defined by the user, based on task importance. [15]
task period, task
deadline and priority component (PC). It allocated a
welghtage percentage to the entire components
(task period, task deadline), further priority of task is
obtained by addmng the weightage percentage of task

contains three components 1i.e.

period and task deadline. Then scheduling component
(SC) is computed by adding these three components.
All tasks are rearranged according to it’s SC by increasing
order. The one with highest SC is considered as most
important task and is executed first. Assign weighted
percentage (depends on task importance) to these three
components task period, task deadline and priority
component (PC).

For example:

Task deadline = 30%
Task period = 20%

Task Priority (TP) is the addition of weighted
percentage of task period and task deadline i.e.

Task Priority = 50%

Task period component (TPC) 15 calculated by.
TPC = (weightage percentage * task period)
Now if task period 1s 25 then
TPC=20%*25=35

Task deadline component (TDC) is calculated by.

TDC = (weightage percentage * task deadline)
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Now if task deadline is 40 then

TDC =30% * 40 =12

Priority component (PC) is calculated by

PC = (weightage percentage for priority - task priority)

Let if the task priority is 15 as assign by the user then
its priority component is:

PC=50-15=35

SC is calculated by
SC=TPC+TDC+PC
For example:

SC=5+12+35
=52

The task with highest scheduling component is
scheduled first.

In our proposed algorithm SC-WITH-DVFS we use
CPU burst for the task utilization that means a task
completes its execution when its CPU burst 1s executed.
We use tl_plane for load balancing on processor. In our
proposed algorithm we find tl plane for each processor
and each processor is utilized to it’s tl_plane. tl_plane is
a restriction for the processors that processor must not be
utilized after it’s tl_plane. tl_plane is calculated by adding
the CPU burst of all tasks and divides it by number of
processors.

So1f C1s CPU burst of each task and M 1s the number
of processor then tl_plane 1s calculated by

N
tl J)lane=z C/M
i=0

For the achievement of load balancing the task
splitting technique is also used with t]_plane. The method
for the task splitting is that when a CPU burst Ci of a task
11s greater than the remaiming tl plane of a processor then
it must be divided. The method according to which Ci
must be divided is that if the CPU burst Ci of a task i is
equal to the remaining tl plane then it is executed on
current processor and the remaining CPU burst of task 15
migrated to the mimmum utilized processor 1.e. a processor
which have minimum cycles of a task, executed.
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TLet we have a taskset(T1, T2, T3......... Tn)
and each task 1s of style (@I, C1, P1, D1). All tasks must be
executed accordng to 1its schedulng component
mcreasing order. Priority based scheduling 1s used to
assign the resource to the tasks. Tasks having higher
scheduling components are assigned ligh prionty whle
small scheduling compenent 1s considered as low priority.
Ci/pi denote the utilization of the tasks and the total

processors utilization is given by
n
U= Cipi
i=1
Algorithm 1: Set frequency for tasks

1. Sort all tasks in an increasing order of scheduling
component of each task in active (t) set 1.e. SC1 < SC2 <

2. U = 0; //global variable

3.P=nm:

4. Fori=1to|Ticactive (t) |do
5. U=U+ ui;

6.T=U;

7. Fori= 1 to|Tic active (1) |do
8. IfUi>T/F then
9. Tispeed = ui;

10.P=pP-1I;
1.7 =T-ui;
12, Else

13. Ti.speed = C /M;

In our proposed algorithm we have extended the
worl proposed in [1] and [15] and have implemented a
SC-WITH-DVFS for
multi-processor real-time systems. The importance of
our work is to reduce the drawback of RM and DM
and also to minimize the power consumption of

new scheduling algorithm i.e.

processors by scaling down the processor voltage and
frequency, according to its active tasks. We have also
focused to balance the load on processors by using
maximum  utilize the
and task
techniques to equal load on each processor. In [1]

the concept of tl plane (to
processors  to <= tl plane) splitting
DVFS 1s used to dynamically scale the Frequency of
processors according to active tasks set in the ready
queue. In [15, 25, 26, 27, 28, 29] the authors have
scheduled the most important tasks first. We find
scheduling components for each task. Our proposed

algorithm has the following properties.

¢+  SC-WITH-DVFS is used to saves energy when we
dynamically scale the frequency for each processor
according to the current active tasks. First we find
the frequency for each active task by using algorithm
1 and then we scale the frequency of processor
according to the current executed task.

*+  SC-WITH-DVFS reduces the drawback of RM and
DM by finding the scheduling component of each
task according to [1]. The task having highest
scheduling component is considered the most
important task and therefore is scheduled first,

+  SC-WITH-DVFS is extend [1] for
multiprocessors.

used to

»  Using tl_plane and task spliting techniques are used
to achieve load balancing on processors. tl_plane 1s
a restriction for the utilization of the processors.
Along with this restriction the task spliting
technique 1s used m our proposed algorithm
SC-WITH-DVFS, to balance the load on each
Processor.

We set the frequency for the current active tasks,
by using algorithml. In our algorithm SC_WITH DVFS
we sort the scheduling component of all active tasks
in descending order so that the most important task
15 schedule first. U contains the total utilization of all
active tasks. M 1s the number of processors. We find
the average utilization C/M, 1if task utilization 1s greater
than 1its
utilization of the task as its

average utilization then we assign the
frequency and the
mumber of processor is reduced by 1, otherwise we
assign the average utilization as its frequency to this
task. So algorithm 1 is used to set the frequency for
each task. Now by using algorithm 2 we initialize the
tl plane and find the execution cycle for each active task.
Next we find the processor id for each active task and also
set the frequency for the processor according to its
current active task m the ready queue. We find the
execution cycle for each task and also set processor
frequency according to the current active task frequency.
In step 6 N tasks are assigned to N processors and then
processor utilization 1s subtracted from the tl_plane and
assigns value to the reycle z (remamming cycle of a
processor z).

Using step 13 the remaining tasks are dividing into
N processors. The method of division is that next task is
assigned to minimum utilized processor as mentioned in

step 15. Now if 1i of a task is less than rcycle min
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(remaining cycle on minimum processor) then the new
task will start it’s execution from the existing utilization
t1_start on current processor as mentioned in step 2 and
current processor utilization 1s increased by using step 23.
But m case if 11 of task 1s greater than reycle min, then i
of that task 1s splitted using step 26. TS 1s a part of that
task which 13 migrated to another mimmum utilized
processor, while the splitted task frequency and its id is
not changed, only the processor id is changed. To
achieve load balancing the TS part of the task is further
splitted using step 40 and 41.

In next section we have shown the performance and
results of our algorithm.

Algorithm 2: SC-WITH-DVES

1: for 1= 0to |active tasks|
TPCi=Wpi * Tpi

TDCi = Wpi * Tdi

Pei=Tpci + TDCi;

Se¢i =TPCi+ TDCi + Pei

2: Fori =0toactive Ti 1do
C=C+Ci

TL-plane = /C /m/

3. Set frequency for tasks.

4:Z2=1;

S:Fori= 0t Tido

Li=Ci;

6: I[fLi<=TL plane

7:IfZ < M then

8. task _exe=t+ Li;

/7 to time for Ti to be executed

9: Tiproc id =7,

Atask must be execuite on z processor
10: Z.task id = Ti;

11: Z.speed = Tispeed

12: Proc z util = proc_z util + Li;
Reyele z =1l plane - proc z_util;
13: 2=2+1

14: Else

15: compare processors & find min execute
cycle processor

16: If Li < Revele min

17: task exe = Li;

18: task _proe_id = min;

19: Ti start = proc i util;

/7 task start its execution from Ti start
20: z_task id = Ti;
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21:z speed=Ti speed;

22: proc_min_util = proc_min_util + Li;
23:Reycle_min = TL plane - proc_min_util;
24: IfLi > Reycle _min

25: T8i=Li- Rcycle_min;

20: repeat step 15;

27: task_exe = Rcycle_min;

28: Repeate step 17 to 20;

29: proc_nrin_util =

proc_min_util + Reyele min;

30: repeat step 22;

31:IfTSi = 0;

Algorithm 2: SC-WITH-DVES

32: Repeat step 13.

33 if TSi < Reycle_min

34: Task_exe = spi;

33: repeate step 17 to 20;

36: proc_min_util = proc_min_util + TSi;
37: repeat step 22;

38: else

39:if TSi > Reycle_min

40:
41:
42;
43:
proc_min_util + Reycle min;
44:
45:
46:
47:
48:
49:
50:
51:
52:
33:
54:
35:
36:
37:
38:
50:
60
6l
62 proc_min_util = proc_nrin_util + I2;
63:

752 = TSi - Reycle min;
task exe = Reycle min;
repeate step 17 to 20;
proc_min_ufil =

repeat step 22;

ifrs2 =0

repeate step 15;

task _exe = sp2i;

repeate step 17 to 20;

proc_min_util = proc_min_util + TS2;
repeate step 22;

IfLi<=TL plane

12 =1li-tl plane;

repeat step 15;

task_exe = tl_plane;

repeat step 17 to 20;

proc_min_util = proc_min_util + tl_plane;
repet step 22;

ifi2=0

repeat step 15;

task exe = 12;

repeat step 17 to 20;

repeat step 22;
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RESULTS 10
TL plane =Z Ci/P=37
Example 1 i=1
Table 6.1: tasks set containing 10 tasks with his properties Gantt Chart: B
Inputs: o4
- - - — [1s [13 J17 J14 [ 712 [13 |
Pi Di Ci Priority o 7 1S 20 23 s 36
Tl 25 40 7 6
T2 50 60 12 1 ™ [ [1s |11 [t |18 l
T3 25 30 8 10 0 12 20 27 21 36
T4 40 15 3 3 Fig. 6.2: Analysis load on two processors
T5 10 15 7 8
T6 25 15 7 5 From Graph A and B it is clear that when number of
T7 15 25 5 4 processor is increase the utilization of processor is
T8 30 95 6 2 decrease.
T9 75 85 4 9
T10 20 50 13 20 Example 2
Table 6.3: tasks set containing 20 tasks with his properties
Inputs:
Table 6.2: tasks set containing 10 tasks with his properties Ti Pi Di Ci Priority
Outputs: T1 25 40 7 6
TPC TDC PC sc T2 30 60 12 !
T3 25 30 8 10
T1 5 12 44 61 T4 40 15 3 3
T2 10 18 49 77 TS 10 15 7 8
T3 5 9 40 54 T6 25 15 7 5
T7 15 25 5 4
T4 8 5 47 60 T8 30 05 6 7
T5 2 5 42 49 T9 75 85 4 9
T6 5 5 45 55 T10 20 50 13 20
T11 85 60 9 15
7 3 8 46 37 TI12 10 45 6 14
T8 6 29 48 83 T13 80 65 8 25
T9 15 26 41 82 T4 35 70 4 7
T10 4 15 30 49 T15 10 45 5 12
T16 25 35 12 14
T17 45 75 3 13
Sort task in increasing order based on its scheduling T18 65 90 10 3
T19 95 100 14 13
components. T20 25 20 15 21
TS<TI0<T3<T6<T7<T4<Tl <T2<T9<T8§
Number of tasks = 10 Table 6.4: tasks set containing 20 tasks with his properties
b £ —3 Outputs:
Number of processors = Ti TPC TDC PC SC
0 T 5 12 44 61
TL_plane =Z Ci/P=24 T2 10 18 49 77
i=1 T3 5 9 40 54
T4 8 5 47 60
Gantt Chart: A TS5 2 5 42 49
. T6 5 5 45 55
pL | IS [ 16 [12 | T7 3 8 46 57
° 7 14 2 T8 6 29 48 83
. T9 15 26 41 82
bt R SR B
P Ti1 17 18 35 70
T“ |17 [rs |18 L T12 2 14 36 52
0 8 ? 20 24 T13 16 20 25 61
. . T4 7 21 43 71
Fig. 6.1: Analysis load on three processors 15 5 14 38 53
T16 5 11 36 52
Now we reduce the number of processor 17 o 7 37 33
T18 13 27 47 87
Number of tasks = 10 T19 19 30 37 36
Number of processors =2 T20 5 6 29 40
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T20<T5<T10<T12<T16 <T15<T17<T3<T6 <T7
<T4<T1<TI13<TI1 <T14<T2<T9<T8 <TI19<TI8
Number of tasks = 20

Number of processors =3

20
TL plane :Z Ci/P=53
i=1

Gantt Chart: A

[11 [ 114
26 33

n (115 a1z [ 13
0 15 18

[19 [ |
»
37 41

A
P2 115 [tz me |17 |t 18 | 119 | 118 |

9 7 13 25 30 39 45 47 s
Py |LT0 | Ti5[T6 [ T4 | T13 |12 | T8 |
0 13 18 25 28 36 48 5153

Fig. 6.3: Analysis load on three processors

Now we reduce the number of processor
Number of tasks = 10
Number of processors = 2

10
TL_plane :ZCi/P:79
i=1

Gantt Chart: B

4
B mns wis (o o [ms s |n m)
DOl M % W W N N8 R BB W
s
Bors e [me [ 1 ]m e [n [m |
L
U T VR T S S TR 3

Fig. 6.4: Analysis load on two processors

Mo of processars

1 1
10 18
cycle ol tasks

[}
i}
ry
(&3]

No of processors

15

1
10
load on processor

20

Fig. 6.5: Simulation Example 1

Our simulations were created in parallel computing
toolbox of MATLAB. Different task sets were scheduled
and the algorithm was verified.
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Mo of processors

i
20
cycle of tagks

Mo of pracessors

15 20 40

load an processor

Fig. 6.6: Simulation Example 2

The first 3 tasks are assigned to the 3 processors and
the next tasks are assigned to the processor having
minimum No of cycle and so on. The last task T3 of cycle
12 is greater than the remaining cycle on a P1. So task 3 is
splitted i.e. 10 cycle of T3 is executed on processor 1 and
the remaining 2 cycle of T3 is executed on the processor
having minimum cycles that is P2. The last task T4 of
cycle 6 is greater than the remaining cycle on P3, therefore
task 4 is splitted i.e. 4 cycle of T4 is executed on processor
3 and the remaining 2 cycle of T4 is executed on the
processor having minimum cycles that is P2. And thus all
the processor are equally utilized.

The first 2 tasks are assigned to the 2 processors and
the next task is assigned to the processor having minimum
No of cycle and so on. The last task TS5 of cycle 6 is
greater than the remaining cycle on a P2. So task 5 is
splitted i.e. 5 cycle of TS are executed on processor P2 and
the remaining 1 cycle of T5 is executed on the processor
P1. The utilization on P1 and P2 is 36 i.e. equal loads on
two processors.

The first 3 tasks are assigned to the 3 processors and
the next task is assigned to the processor having minimum
No of cycle and so on. The last task T7 of cycle 14 is
greater than the remaining cycle on a P1. So task T7 is
splitted, 12 cycles of T7 is executed on processor P1 and
the remaining 2 cycle of T7 is executed on the processor
having minimum cycle. this is P2.the last tasks T8 of cycle
10 is greater than remaining cycle on processor P2.so T8
is splitted 6 cycle of T8 is executed on P2 and reaming 4
cycles is executed on p3. The utilization on P1, P2 is 53
and P3 is 52.

The first 2 tasks are assigned to the 2 processors and
the next task is assigned to the processor having minimum
No of cycle and so on. The last task T9 of cycle 14 is
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cycle of tasks
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load an processor

Fig. 6.7: Simulation Example 3

N

No of processors

L L L

e}

No of processors

40 50 60 70 80

0 10 20 30
load on processar

Fig. 6.8: Simulation Example 4

power consumption graph
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Fig. 6.9: Comparison of energy consumption

power consumption graph
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Fig. 6.9 comparison of energy consumption

102



Middle-East J. Sci. Res., 15 (1): 94-103, 2013

Table Comparisen: Proposed Algorithm with Exsisting Algorithrms

Power efficient Energy-efficient Realtime
rate monctonic scheduling algerithm scheduling with
Fate Deadline Utilizatien schedulng for  New scheduling for speradic real-time task splitting on
monotornic monetonic Mext-fit balancing multiprocesser  algerithm for tasks in rmultip rmultiprocessors Proposed
Criteria EMD oM Algorithrm algerithm system real time systern rocessor systerns (M) Algorthm
Task mmportance Equal Equal Equal Equal Equal Priorty component  Equal Equal Priority
15 added corrpenent 1s added
Processor Uniprocessor  Multiprocessor Multiprocessor Multiprocessor  Multiprocessor  Uniprocessor Multiprocessor Multiprocessor Multiprocessor
Scheduling criteria  Task period  Task deadlme  Task period Task utilization  Task period Task periodTask Task period Task period Task periodTask
deadlineTask pricrity deadlineTask
priotityTL-plane
Task scheduling Tasks are Tasks are Tasks are Tasks are Tasks are Tasks are Tasks are Tasks are Tasksarearanged
arranged arranged m arranged 1n arranged in arranged mn arranged 1n arranged 1n arranged 1n in ascending
inascending  ascending ascending ascending ascending ascending order ascending ascending order based
orderbased  order based order based order based order based based on scheduling  crder based order based on scheduling
on period o deadline o period on utilization on period companent on period on period cormp nent
Power efficient Energy-efficient Realtime
rate monctonic scheduling algerithm scheduling with
Rate Deadline Utilization scheduling for  New scheduling for sporadic real-tirme task splitting on
menotenic monctonic Mext-fit balancing multiprocesser  algenithm for tasks in multip multiprocessors Proposed
Criteria (RN O Algorithrn algorithm systern real time systern rOCEssor Systerns (WP Algorithm
Time difference Taskperiod  Task deadlne  Task period Task utilization  Task period Task period, Task period Task period Task period,
does not does not does not does not does ot task deadline task does not does not task deadline, taslk
change change change change change priority does not change change priority doesnot
with time with tirne with tirne with tirne with time change with time with time with tirme change with time
Problem Starvation Starvation Starvation, Notask splitting  Starvation Starvationls Starvation Starvaticn, N/A
Load Perfect balancing  There isno reduce Load
balancing of utilization task splithng,  for balancing
across different  And all only
processor is PrOCesscr are  Uniprocessor
difficult. net equally
utilized
Energy savingby — M/A TiA TiA /A A JOFEN DVs WA Load balancing

greater than the remaining cycle on a P2. So task T9 1s
splitted, 13 cycle of T19 is executed on processor P2 and
the remaimmng 1 cycle of T9 15 executed on the processor
P1. The utilization on P1 and P2 is 79 i.e. equal loads on
tWwo processors.

Comparative Study: Our algorithm was executed several
times. It Tuns in n® worst case analysis. In cur algorithm if
the TL. plane is a real number, then all processors are
equally utilized. If TL plane 1s FF number, then at least one
processor 1s less utilized, in which case there a surety that
at least one task has been splitted. If number of tasks is
mereased than number of processors, then processors are
more utilized.

CONCLUSION

In this paper we have proposed a new scheduling
algorithm for multiprocessor real-time systems, which is
used for the energy efficiency [30, 31,32, 29, 33, 34] as will
as to reduce the drawback of RM and DM by scheduling
the most important task first. Our algorithm also focuses
on load balancing on processors. Recently a lot of efforts
are put for energy reduction of processors. As a drawback
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of reducing energy consumption of the system, its
response time is increased, hence degrades the overall
performance of the systems. In prior work, higher
importance is given to energy reduction and reducing
response time. We consider the importance of response
time of important real-time tasks while the energy
reduction is achieved. In our work we propose a solution
that reduces the power consumption of a multiprocessor
system while the response time of important tasks is kept
within bound.In future the algorithm can be extended to
accomplish and schedule large number of jobs over a
huge networl environment like Grid and Cloud
Computing.
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