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Abstract: In this paper, we construct efficient forecast intervals for autoregressive conditional heteroscedastic
(ARCH) models using the bootstrap. Forecast intervals for returns and volatility are constructed using the linear
estimator (LE) for ARCH model. An advantage of LE over the widely used quasi maximum likelihood estimator
(QMLE) is that its computation is very easy and requires less CPU time which enables us to construct these
forecast intervals in quick time. Monte Carlo results show that although both estimators provide good mean
coverage, the LE can be considered favourable in terms of its mean lengths close to empirical with low standard
errors. The bootstrapped prediction intervals for volatilities capture the asymmetry commonly present in real
data sets.
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INTRODUCTION forecasting ARCH models and found that the LE provides

The autoregressive conditional heteroscedastic predictability.
(ARCH) model was suggested by [1]. In this model, the Predicting the distribution of the future returns has
volatility of the current return of  an  asset  is  described become an increasingly interesting area of research
as  a linear  function of the squares of past returns. amongst financial practitioners  and  researchers.
Quasi-maximum likelihood estimator  (QMLE) is Accurate prediction  of  future  volatilities  is  important
frequently used for the  estimation  of  ARCH  models. for the implementation and evaluation of asset and
The asymptotic properties of the QMLE under the derivative pricing [5]. Measuring the financial risk such as
existence of fourth-order moment on the ARCH process value-at-risk (VaR) is also very important and an accurate
were established by [2]. The QMLE does not admit a measure of this risk estimate is desisatle. Most of the
closed form expression and numerical optimization surveys deal with predicting point forecast of returns,
methods must be used to obtain the estimates. volatilities and VaR; see [6-8] among others for discussion

The linear estimator (LE) for the parameters of ARCH on forecasting.
model was proposed by [3]. The linear estimator has a These studies focus on point forecasts and most
closed form and is obtained by solving linear equations. importantly ignore parameter uncertainty. The parametric
Hence, it can be easily implemented and does not require bootstrap prediction intervals was first discussed by [9].
the use of any numerical optimization methods or the [10] gave non-parametric bootstrap intervals for AR
choice of initial values of parameters. The linear estimator models. [11] proposed a bootstrap method for prediction
requires very little computational time for the estimation intervals of future observation in ARMA models with
of the parameters of ARCH model. This advantage ARCH errors without considering parameters uncertainty.
enables researchers to perform computer intensive tasks [12] extended bootstrap methods to ARIMA models [13]
such as volatility forecasting using recursive scheme and compared nonparametric and parametric bootstrap with
bootstrapping volatility models in short time. [4] Baillie and Bollerslev (BB) Gaussian asymptotic prediction
compared the LE with the QMLE in estimating and interval in a Monte Carlo experiment.

estimate as accurate as the QMLE and had better
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In this paper, we use bootstrap to obtain prediction Let  for , thus
intervals for returns and volatilities. The bootstrap
prediction intervals are obtained using both the LE and
the QMLE. These prediction intervals along with point
estimate will help practitioners to evaluate the forecasting and  Then squaring both sides of (2.1) and
performance of their models. We investigate the using the form  we get
difference in bootstrap prediction intervals of both
estimators. It is important to mention again that LE can be (2.2)
estimated in quick time and thus developing bootstrapped
confidence intervals. Using LE requires very small where .
processing time as compared to the QMLE. [3] defined a preliminary least squares estimator 

Monte Carlo results showed that our LE bootstrap
method generates reliable prediction intervals. We found,
that although both the QMLE and LE provide good mean
coverage, the LE can be considered superior in terms of
its mean lengths close to empirical behaviour with low
standard errors. The bootstrapped prediction intervals for
volatilities capture the asymmetry commonly present in
real data sets.

Our study is important because many researchers
avoid bootstrapping ARCH models with large sample size
due to exhaustive computer time QMLE takes for
estimation. The LE on the other hand estimates the same
model in short time and thus various computer intensive
tasks can be applied on ARCH models.

The  rest   of   the   paper   is  organized  as  follows.
In Section 2 we define the linear estimator for ARCH
model. In Section 3, bootstrap method for constructing
forecast intervals for returns and volatilities are
discussed. Results of Monte Carlo simulations are
presented in Section 4. Finally, Section 5 concludes the
results.

The Linear Estimator for ARCH Model: Consider the
following ARCH model where one observes {X ;1-p t T}t

satisfying

(2.1)

where  is the unknown parameter to be
estimated with 

with { ; 1 t T} are independently and identicallyt

distributed   (IID)    with    mean   zero   and   unit
variance. It is assumed that { ; 1 t T} are independentt

of {X ; 1-p t T}. It  is  also  assumed  that  (2.1)  holds,t

{X ; t 1-p} is a stationary and ergodic process andt

.

of â as the solution of

(2.3)

which yields the estimator given by

where Z is the T×(1+p) matrix whose t-th row equals Z't–1

and Y is the vector with t-th entry Y ; 1 t T.1

An improved estimator  of â can be obtained as
follows. Dividing (2.2) by h (â), we gett–1

Now replacing Z' â by  yieldst–1

Therefore, a linear estimator of â is defined as the
solution of

yielding the linear estimator 
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Bootstrap Prediction Intervals: Consider an ARCH(p) Prediction Intervals: Once the set of B bootstrap future
model where one observe {X ; 1–p t T} satisfying values,  are obtained, the predictiont

Our aim is to estimate the distribution of s-steps
ahead returns X  and volatilities h . The bootstrapT+s T+s

method is described in the following steps:

Fitting the ARCH Model: Fit an ARCH model to the given
data set  and   estimate  the   parameters   of   the   model
â = [ , ,..., ]. We use both the QMLE and LE for the1 2 p

estimation of the parameter vector. Let the estimated
parameter vector be  and the estimated
residuals are computed as

where .

Bootstrapping: Use the fitted model to generate bootstrap
draws of the parameter. First, we generate , random
draws with replacement from , where  is the empirical
distribution function of the centered residuals

. Then the following replicates are generated:

The parameters of this generated series are estimated
and the estimated parameters of this bootstrap series

 are used to obtain future values.

Future Realisations: Generate future realisations of
returns and volatilities. We want to estimate the
distribution of future returns X  and future volatilitiesT+1

h  for s>0, where s is the forecast step. In order to getT+1

these future realisations, we need

and  (random draws with replacement from ). Using
the above, the future realisations of returns are generated
recursively as:

intervals are defined as quantiles of the bootstrapped
cumulative distribution function (CDF) of  More

specifically, we define the bootstrapped CDF  of  by

and its Monte Carlo estimate by

where #(.) counts the number of cases

when the condition within brackets are satisfied and b =
1, 2, …, B. The for a given , a 100(1- )% prediction
interval for  is given by

where

Similarly, we can define the bootstrap prediction
intervals for volatilities. For future volatilities

 the prediction intervals are defined as

quantiles of the bootstrap CDF of  The bootstrap

CDF of  is given by  and its Monte

Carlo estimate by  Then, a 100(1- )%

prediction interval for  is given by

where

Monte Carlo Simulation: Two different studies are
conducted to develop bootstrap prediction intervals for
returns and volatilities and to compare the results of the
QMLE and LE. The model simulated is an ARCH(2) model

For this study errors are generated from the standard
normal and student-t distribution with 3 degrees of
freedom. The motivation behind these values for
parameters  is  not  to use high persistent values. In future
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we aim to user different combination of parameter values For empirical lengths, R=10,000 independent
and other fat-tailed distributions. The ARCH(2) model is replication each of size 500 are generated. The root mean
simulated with sample size T=500 and parameters are squared error (RMSE) for both estimators at each step
estimated using the QMLE and LE. For this model, under length is calculated, where RMSE for returns is defined as
particular sample size and error distribution, R=1000 future
values of X  and X  are generated with true parameterT+S T+S

values, where the forecast steps considered are s = 1,2
and 20. Using the bootstrap  method  with  B=999, a
100(1- )% prediction intervals for returns denoted by

 and for volatilities denoted by  are

obtained.
The conditional coverage and length for returns are

computed as  for r = 1,2,....,R.

Choices of nominal coverage considered are 80%, 95%
and 99%, though only results for 99% prediction intervals
are presented as this interval could be of more interest in
risk management. The length is defined as

Similarly the conditional coverage and length for
volatilities are obtained. The coverage of the left and right
tail of the distribution of returns and volatilities are also
obtained. The average and the standard deviation for
coverage and length and the average proportion of
observation lying out of the left and right quantiles are
computed based on K=100 Monte Carlo replicates.

Table 1 reports the mean coverage and the
corresponding standard errors together with the mean
length with its corresponding standard errors and the
mean coverage on the left and right tails and the RMSE
when ARCH(2) model is generated with standard normal
and student-t distribution with 3 df for predicting intervals
for returns for s = 1,2 and 20 steps ahead. It can be seen
that the mean coverage and their corresponding standard
errors for both estimators are close to each other and
provide good match to the empirical coverage with the
QMLE having slightly high probability. By examining the
results of mean length we found that the lengths for LE
are close to empirical length and their standard errors are
below than those of QMLE. These findings become more
prominent in the case of student-t distribution. The mean
lengths  of  QMLE  for  all  step lengths are found greater

Table 1: Prediction intervals for returns of ARCH(2) model with nominal coverage of 99%
T = 500 B = 999 Mean coverage S.D of coverage Mean length S.D of length Mean coverage below/above RMSE

1-step ahead
Empirical 0.9900 2.8933 0.50%/0.50%
QMLE 0.9869 0.0071 3.0967 0.4891 0.57%/0.74% 0.0107
LE 0.9852 0.0074 2.9622 0.4284 0.63%/0.86% 0.0123

10-steps ahead
Empirical 0.9900 3.0550 0.50%/0.50%
QMLE 0.9828 0.0096 3.0816 0.4992 0.98%/0.75% 0.0155
LE 0.9816 0.0080 2.9936 0.4833 1.02%/0.82% 0.0156

20-steps ahead
Empirical 0.9900 3.0416 0.50%/0.50%
QMLE 0.9919 0.0051 3.0938 0.4647 0.28%/0.54% 0.0059
LE 0.9914 0.0047 3.0161 0.4280 0.28%/0.58% 0.0060

Student-t(3) Distribution
1-step ahead

Empirical 0.9900 2.7157 0.50%/0.50%
QMLE 0.9907 0.0066 3.3364 0.9949 0.57%/0.36% 0.0078
LE 0.9889 0.0057 2.9192 0.5496 0.66%/0.46% 0.0084

10-steps ahead
Empirical 0.9900 2.8917 0.50%/0.50%
QMLE 0.9909 0.0053 3.3347 0.8500 0.39%/0.52% 0.0067
LE 0.9874 0.0067 2.9554 0.6913 0.64%/0.62% 0.0071

20-steps ahead
Empirical 0.9900 3.1312 0.50%/0.50%
QMLE 0.9861 0.0074 3.3538 0.9669 0.60%/0.79% 0.0116
LE 0.9836 0.0065 3.0282 0.6815 0.77%/0.87% 0.0121
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Table 2: Prediction intervals for volatilities of ARCH(2) model with nominal coverage of 99%
T = 500 Mean coverage
B = 999 Mean coverage S.D of coverage Mean length S.D of length below/above RMSE

Standard Normal Distribution
1-step ahead

Empirical 0.9900 1.7390 0.50%/0.50%
QMLE 0.9857 0.0211 2.0875 1.2881 0.48%/0.94% 0.0290
LE 0.9730 0.0448 1.6939 0.8186 1.45%/1.24% 0.0497

10-steps ahead
Empirical 0.9900 1.7957 0.50%/0.50%
QMLE 0.9846 0.0276 2.0545 1.0999 0.65%/0.89% 0.0294
LE 0.9735 0.0433 1.8277 1.2007 1.57%/1.09% 0.0482

20-steps ahead
Empirical 0.9900 1.9711 0.50%/0.50%
QMLE 0.9891 0.0268 2.2128 1.1523 0.74%/0.35% 0.0273
LE 0.9777 0.0441 1.8338 1.1777 1.66%/0.57% 0.0472

Student-t(3) Distribution
1-step ahead

Empirical 0.9900 1.7759 0.50%/0.50%
QMLE 0.9887 0.0150 3.4645 4.2050 0.00%/1.13% 0.0162
LE 0.9748 0.0373 1.3863 0.8745 0.51%/2.01% 0.0422

10-steps ahead
Empirical 0.9900 1.8344 0.50%/0.50%
QMLE 0.9947 0.0108 3.5826 4.1048 0.00%/0.53% 0.0108
LE 0.9835 0.0300 1.4372 1.1011 0.37%/1.28% 0.0320

20-steps ahead
Empirical 0.9900 2.3055 0.50%/0.50%
QMLE 0.9894 0.0127 3.5116 4.1143 0.00%/1.06% 0.0138
LE 0.9743 0.0410 1.4704 1.4169 0.55%/2.01% 0.0457

than both the empirical lengths and LE. This shows that We conclude this section by highlighting our
prediction intervals of QMLE are on average larger than contributions and findings. We defined bootstrap
the mean length of LE and this may be one of the reasons prediction intervals for returns and volatilities for ARCH
of high coverage probabilities of QMLE. The mean models. We showed that our method is easy to apply
coverage on the left and right tails of both estimators when the LE is used for the estimation of ARCH models.
shows similar results. The root mean squared errors of Results of our simulations indicated that the proposed
QMLE are found slightly smaller than the LE. bootstrap method is appropriate for predicting interval

Next, we analyse the performance of both LE and forecasts. We found that LE provides better prediction
QMLE prediction   intervals   for  future  volatilities. intervals than the QMLE in most of the cases.
Using  same  DGP  as in the previous case, we develop We write our own MATLAB and Fortran code and
99% bootstrapped prediction intervals for s = 1,2 and 20 checked the CPU time (in seconds) taken by both the LE
steps ahead volatilities. The results when errors are and the QMLE for estimating an ARCH(3) model. The
generated form Gaussian and student-t distribution with experiment was performed on Intel Core 2 Duo CPU
3 df are tabulated in Table 2. The mean coverage for running at 2 Ghz with 2 GB of random access memory
QMLE is found greater than  LE  with  low  standard (RAM). The sample size used was T = 1,000 and the
errors. The mean lengths of LE are close to empirical experiment was repeated K = 10,000 times. The Linear
lengths  where as that of QMLE are larger in size with Estimator took 215.55 sec whereas the QMLE took 902.43
large standard errors. Again this feature can be seen in sec for estimating the same data sets. This clearly reveals
the case of Students-t(3). The results of the average the advantage of using the LE for estimating the
coverage on the left and right tails reveal that the shape parameters of ARCH models as the LE takes around one-
of the volatility is asymmetric which is often observes in fourth of the time than the QMLE and also is not only
real  data  sets. The RMSEs of QMLE are found smaller efficient but estimates the parameters as accurately as the
than the LE and this can be due to the wider lengths of QMLE. This difference becomes very significant when
QMLE. resampling methods are used on large data sets.
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CONCLUSION 6. Baillie, R.T. and T. Bollerslev, 1992. Prediction in

Prediction intervals for returns and volatilities are variances. Journal of Econometrics, 52(1-2): 91-113. 
developed using a simple bootstrap method. Monte Carlo 7. Andersen, T.G., T. Bollerslev, F.X. Diebold and P.
results showed that although both estimators provide Labys, 2001. The distribution of realized exchange
good mean coverage, the LE can be considered rate volatility. Journal of the American Statistical
favourable in terms of its mean lengths close to the Association, 96(153): 42-55.
empirical with low standard errors. Furthermore, the LE 8. Tsay, R.S., 2005. Analysis of Financial Time Series.
takes little CPU time on computer intensive tasks as 2nd Edition. Wiley. New York.
compared to the QMLE. 9. Beran, R., 1990. Calibrating prediction regions.
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