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Abstract: In regression the assumption that the errors are independently and identically distributed(IID) is often
violated in practical situations. In such situation, the least square estimates of the regression parameters are
still remain unbiased and consistent but no more efficient. Various Heteroskedastic estimators are suggested

to deal with this problem. In this paper, through simulations we look at the appropriateness of asymptotic
distribution of the test statistic used for the testing the significance of regression coefficients. We consider the

quasi test statistic based on various heteroskedastic consistent covariance estimators suggested in the

literature.
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INTRODUCTION

Regression analysis 1s commonly used to check and
model the relationship between two or more than two
variables. Among the other common assumptions about
the error term in the regression model, one assumption is
that the error variance should be constant for all the
observations. But in many practical applications the error
variances are not constant and this condition is known as
Heteroskedastic errors. In case of Heteroskedastic errors,
the ordinary least square (OLS) estimates of the
parameters are still unbiased and consistent, but the
variance covariance matrix estimate of the regression
model is no more unbiased and reliable. Thus the results
of the tests which use these variance estimates may be
highly misleading. Tn this situation, Heteroskedastic
consistent covariance matrix estimators (HCCMEs) are
used HCCMEs remain consistent and efficient whether
the errors are constant or not. Hypothesis testing and
other inferences are then made by using the OLS
estimates coupled with the standard errors obtain from
these HCCMES.

There are several consistent covariance matrix
estimates for the OLS estumates which remain consistent
under the heteroskedasticity of unknown form. The well
known and most commonly used HCCME denoted by
HCO was proposed by [1] following the results of [2] and

[3]. The Heteroskedasticity consistent standard errors can
be obtained by applying the square root on the diagonal
values of these HCCMEs. With these estunators the
researchers are now able to make any hypothesis testing
inference or to compute confidence interval for the
parameters of the regression model. Usually it is a general
practice to base the inference on these heteroscedasticity
comnsistent standard errors because these are robust of
heteroscedasticity and provide accurate inference with
minimal model assumption see e.g [4].

A very common and identified flaw of [1], 1s that it 1s
biased when the sample size is small and leverage points
are present in the data, see e.g., [5]. A few alternatives of
[1] estimator,HCO, are proposed and studied in the
literature. Some of the varnants are, the HClestimator by
[6], HC2estimator by [7], HC3 estimator by [8], the
HC4estimator by [9], HC4mrecentlyproposed by [10] and
HC5proposed by [9]. There are several simulation studies
in which the small sample performance of these HCCMEs
15 mvestigated and studied that how accurately these
estimators estimate the OLS covariance matrix. Some of
these simulation studies include, [8, 10, 11-13]. Recently,
[14] has suggested a monte carlo algorithm to estimate the
covarlance matrix of regression coetficients.

[15] studied the performance of the HCCMESs in terms
of quasi test statistics and concluded that the HC3
estimator 1s best and it 1s also anapproximation to the
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jackknife estimator. Similar results are also reported in
[11, 16, 17] studied the amount of bias in HCCMEs while
estimating the true variance. [12] has used quasi test
statistics based on different HCCMEs with leverage
observation in the data to check the performance of these
estimators. They suggested that HC4 15 best estimator in
presence of leverage observation [18] computed the
confidence interval using the different HCCMEs and
showed that the confidence interval estimation obtained
using the HC4estimator is much reliable then any other
techmique.

More recently, [10] suggested a new estimator,
HC4mand showed that this new estimator performed the
best among all the HCCMEs.

In our study we study the finite sample performance
of wvarious HCCMEs and compare asymptotic
distributions of these tests by Monte Carlo simulation in
the case of normal and heteroscedastic error. The novelty
of our study is that we suggest a Monte Carlo method
instead of using numerical integration. Qur results
suggest that performance of these estimators 1s affected
by the distribution of error term but the overall
performance HCAm estimator is better. Moreover, the
novelty of our worl is that we have used the Monte Carol
method to study the appropriateness of the asymptotic
distribution of the quasi test statistic defined for various
HCCMEs. To the best of our knowledge, the newly
proposed estimator HC4mhas not been studied and
compared under the settings as in this study.

The rest of the paper in orgamized as follows: we
mntroduce the model and covariance matrix estimators in
Section 2. Section 3 provides the simulation design and
discussion of results. Finally, the conclusion 1s given in
Section 5.

MATERIALS AND METHODS
The regression model considered 1s,
Y=Xp+e

where, X 1s the n » &k matrix of mdependent variables, Y 1s
vector of dependent variable with order # = 1 and € 1s the
vector of error term with order n x 1. B(B,,....5..) is the
vector of unknown parameters. The € mn the model 1s
distributed as € ~ N0, 6), (0 <0} <), i =1,...,n, where
n denotes sample size. The error term 1s independently
distributed implies Ee, €) = 0, for all i # j and its
covariance matrix will be a diagonal matrix denoted by Q
and given as ) = diag(c®,..,0°,).

The ordinary least square (OLS) estimate for the
parameters vector B of regression model (wef{regression
model}) can be written as j_¢x7x)1xTy having its
covariance matrix, |y = PQP”, where,

P=(X"X)"'¥X"

when the model error term i1s homoskedastic then it
has its variance equals to, J = o’ (3X)™" and it can be
estimated as g_g2xTxy!.
e=(Y-Xf).

When the model is not homoskedastic it is common
practice to use the OLS method to find the estimates of

where 52 _loyn g and

the parameter vector & and then combine 1t with some
heteroscedastic consistent covariance matrix (HCCME)
estimator to perform statistical inference. The commonly
used HCCME called HC, was given by [2] and [1] is given
as

HCA = PQPT

where ~2 . This estimator is proved to be

? é:dmg{az,...,en }

consistent in various studies, see e.g [19], when nothing
18 known about the form of heteroscedasticity. HC, can be
seriously biased for the small samples. There are some
alternatives to the [1] estimator in literature, these
estimators are proposed in order to centrol for the
tendency to underestimate the variance of the estimates.
These alternative estimators are found to be consistent
under heteroscedasticity and incorporates small sample
adjustment factors see e.g [8, 11, 12]. In the following
paragraphs we shall now discuss some of the variants of
the HC, estimator.

The HC, estimator proposed by [13]is written as,

HC, = PE,QP7

where g - " ; is called the finite sample correction
n—k

factor, where k denotes the munber of parameters and [ 1s
n x n1dentity matrix.
[15] proposed HC, estimator given as,

HC, = PE,QP”

where E, = diag{1/(1 — h,)} and &, i = 1,....n denote the #*
diagonal value of the hat matrix, H = X(X"X)'X". These A,
values in H are called the leverage of the #* X observation
and indicates whether or not a value in X is outlying.
The 4, measures the distance between i value of X from
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the mean of all # values. So when A, approaches 1, it
indicates that the 7* value is distant from mean and has
large leverage. In general a value greater then 2p/n, where
p denotes the number of parameters, 1s considered as
leverage observation.

The HC, given by [8] can be written as,

HCy = PE,QPT

where B, = diag{l1/(1 — 1,0}, i = 1,...,n. The estimators,

CH, and HC,, include the finite sample correction
factors that are based wupon the leverages of
different observations, greater the leverage, more

mflated will be the corresponding squared residuals
see e.g [10].
The HC, estimator proposed by [9] 1s,

HC, = PE,QP7

where, g, =dig/1-h)%) and 8 = min{d, (nh)k}; i =
1,..n

R

HC, estimator given by [5], is given as,

HCs = PE;QPT

here 8, = min{(nh, )k,

WherS . diag(1/af0- ¥ )

maxid,(nch, Wk}t where b, = maxcih,. h} and ¢ some
fixed value in [0 1] interval, see e.g [10].

The HC,, by [5] is,

HC,, = PE, CQPT

where, g,,, -dieetiin-#,)0) and 8 = min{y.(nh)k} +

min{y,,(nh,)VEY, i = 1,..,n The values for v, and y; are
selected in such a way that they will reduce the effect of
leverage observation. The values suggested by [10] are
¥, = 1.0 and y, = 1.5 and we will also use these values in
our simulations.

RESULTS
In this section, we give simulation results regarding
the performance of considered HCCMES, see Section 2 for

defimtions. We use the following regression model,

E:B1+B2Xil+"'+BkXik—l+ei ;izl,...,n,

where, X, is the 7 observation of the j'4 predictor.
The error terms in the model are mdependent of each
other and have mean zero with ¢ error variance

-1

2 _ . = :

o; _exp(z o7 where 7 = 1.....n, k 1s the number of
=1

parameters and «, being a real scalar.

In our simulation study, we use the model given in
(10) with three and five regression parameters 1.e, k = 3
and k = 5, we mainly follow paper by [10]. We have
considered the different sample sizes, n = 25, 50, 100, 500
in order to compare the behavior of HCCMEs for small
and large samples.

The interest lies in testing the hypothesis H;: 8, =0
against the two sided alternative hypothesis. The quasi
test statistic used is

var(fy)

T

where 3, denotes the OLS estimate of f§, and var(gy)
1s variance estimate of 3, and is based on the HC,, HC,,
HC, and HC,, estimators. The asymptotic distribution
of T 1s chi-square with one degree of freedom ()2, see
[20]. The data 1s generated under the null hypothesis
for all

calculated the relative probability discrepancies for all the

considered simulation design. We have
estimators. Relative probability discrepancies (RPD) is

computed as,

*  Select the exact probabilities from the desired
distribution for the desired level of significance y
here 1 our study we compute the exact probabilities
from X12 .le p(xﬁ y and y lies between O and 1.

»  Compute the test statistic T* for each of the N Monte
Carlo runs.

»  The relative probability discrepancy 1s defined as

Tt < gl VN -y
Y

RPD

We consider the model with unequal disturbances
with leverage points and in order to set the level of
heteroscedasticity, which is denoted by A and computed
as lzm(gf ;mm(gf)),l =1,..,n - In simulations we use @ =

0.26 by to obtain 4 = 100 following [10], when £ = 3, we
seta, =, =026 and whenk =5 weseta, = o, = o, = ¢,
= 0.26 to obtain 4 = 100, where A is the strength of
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RPD
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heteroscedasticity. The number of Monte Carlo
replications is 1000. All simulations results are carried out
using the R programming language see [21].
We use Monte Carlo method
different quasi t-test with independent and
heteroscedastic ~ errors and  with three and five
regression parameters for various choices of n. To study
the effect of underlying distribution of covariates, we
consider the following cases for the regression model
given in (10).

to compute

Case-1: Lognormal(LN) X~ i » where Z, ~ (0,1), where

i=1,.,n andj=1,.. k-1,

Case-II: Chi-square X, where v = 1,3,5 is degree of

-2
freedom.

Figure 1 shows the plots of the RPD against the
corresponding asymptotic probabilities, y andfor various
choices of n, when the distribution of predictors is
standard lognormal distribution. We present the results
for test statistics which are based on the variances
from HC,, HC,, HC, and HC,, in heteroscedastic case.
We simulate all the values of the covariates using Monte
Carlo simulation and predictors are independent and

RPD

Gamma

(d) n=500
Fig. 1: RPD versus asymptotic probabilities (Gamma); covariates value are selected randomly from LN(0,1), i.e standard
lognormal distribution with k = 3 and n =25, 50, 100, 500

random. To check the performance of the estimators from
the graph of RPD, we see that how close the discrepancy
lines are to the zero line, the closer the discrepancy lines
to the zero line (RPD = 0), the more reliable the inference
will be, see e.g [12].

When £ = 2 and the distribution of the predictors is
LN(0,1), as we move away from the tail area the first
order asymptotic approximation of the HC, statistic
under the null distribution became very poor and its
behavior is approximately same even for large sample
sizes (Figure 1).The first order approximation of the HC,,
is better. Comparatively HC, test is the poor performing
test for considered all sample sizes and for the lower
values of gamma (y < 0.7), but as the value of gamma
increases (y > 0.7) the performance of HC, is better than
all other estimators especially with the large sample size,
see Figure 1 (d). The Figure 1 elaborates that with the
increase in the value of y the value of RPD decreases,
implies that, as the value of y increases the probability of
rejecting the null hypothesis decreases. Results of RPD
for HC; clearly shows that the approximation of this
estimator is better for lower values of gamma (y < 0.8) as
compared with HC, and HC,, but as value of gamma
approaches to one the RPD of HC, becomes negative for
both k =3 and k = 5.
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RPD versus asymptotic probabilities (Gamma); covariates value are selected randomly from LN(0,1), i.e standard
lognormal distribution with k = 5 and n =25, 50, 100, 500.
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RPD versus asymptotic probabilities (Gamma); covariates value are selected randomly from 2 (df=1) distribution
with k =3 and n = 25, 50, 100, 500
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Gamma

(c)n=100
Fig. 4: RPD versus asymptotic probabilities(y); covariates value are selected randomly from %2 (df=1)distribution with
k=5 and n =25, 50, 100, 500

Table 1: Tests of heteroscedasticity

Test LM df p-value
Breusch-Pagan test 30.02 3 0.000
Goldfield-Quandt test 1.99 33 0.026

For k = 5, the estimators exhibit a similar kind of
behavior as shown in Figure 2, as was for £ = 3.
From the above discussion and the results obtained
concluded that the overall performance
of HC,, is comparatively better than all  other
estimators. These results are in agreement with
those obtained by [5] who showed that the HC,,
outperformed other HCCMEs when there are extreme
values in the data and the distribution of errors is non-
normal.

In Case II, it is found that the performance of the
estimators with the smaller degree of freedom i.e, 1 and
with smaller sample sizes, n = 25 and n = 50 is similar to
that of standard lognormal distribution and as the sample
size increases the RPD of all the estimators decreases
gradually and become negative and when » = 500 all the
estimators have RPD below 0 and highly underestimate
the null hypothesis see

Figure 3. When k£ = 5 and the sample size is small
there is no change in the behavior of the estimators see
Figure 4 (a) and (b)for n = 100 HC, perform better for y <

it can be

RPD

— HCl
- - HC3

oo0s
1

©=s HC4m]

0.6 and with 500 sample size the situation is again similar
to that of £ = 3. We also check the performance of
considered HCCME:s by increasing the degree of freedom
of chi square up to 2 and 5 in Case II and find that the as
the degree of freedom increases all the estimators shows
very poor performance and under reject the null
hypothesis for all the sample sizes.

Real Example: In this section, we The data set used
contains the information regarding the house price of
sample of 88 London houses together with some
characteristic regarding houses given in [3]
chapter. 7. The regression model according to the
data is

those

Y= Bo+ BiXii+ BrXoi+ B3 X3 +6,i=1,...88,

where, the dependent variable 7, is the price of the house,
X, is the number of bedrooms in the house, X, is the lot
size and X; is the size of house in square fit. In order to
test the presence of heteroscedasticity in the data we
apply the Breusch-Pagan test and Goldfeld-Quandt test
and the results are given in Table 1. Both the tests reject
the null hypothesis of homoskedasticity at the 5% level of
significance, which implies that the heteroscedasticity is
present in the data.
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Table 2: Standard deviations (8.1)), test-statistic (f) and their p-values for significance testing of regression coefficients

Fi B G
Test 3D t p-value 3D t p-value 3D t p-value
HC, 8479 1.633 0.106 1.251 1.652 0.102 17.725 6.926 0.000
HC, 11562 1.198 0.234 7.148 0.289 0.713 40.732 3.014 0.003
HC, 43551 0.318 0.751 45.326 0.045 0.964 231.658 0.529 0.598
HC,, 14395 0.962 0.338 11.332 0.182 0.856 60.694 20.023 0.046
OL3 2010 1.537 0.128 06.42 3.220 0.001 13.24 9.275 0.000

The null hypothesis under consideration is Hy: 3, + B
= fB, = B, = 0 against the alternative hypothesis H;: f,# 0
for j=1,2,3. The results for the inference for the model (13)
according to the comsidered null hypothesis and the
p-values are given in Table 2. From the table we can see
that for B, OLS accept the null hypothesis at 5% level of
significance.

The HCCMEs shows the same conclusion about the
B, and do not reject the null hypothesis. For 3, the the
OLS reject the null hypothesis while all the HCCMESs
accept the null hypothesis which means that there 13 no
relation between X, and Y. Similarly for 5, only CH, accept
the null hypothesis and the OLS and all other HCCMEs
reject the null hypothesis at 5% level of significance.

From the above results we can conclude that among
the HCCMEs HC, estimator is providing the precise
inference for the considered data set. It has small standard
deviation for all the parameters and also provide reliable
mference as compared with the other HCCMEs. The test
statistics which 1s based on HC, estimator has the largest
p-value as compared with other estimator for all the
parameters. Thus HC, test 1s the test which has the
smallest amount of evidence against H,.

CONCLUSION

The asymptotic distribution of  quasi test
statistic based on HC estimators is more appropriate,
in general, when variance is estimated using HC,; and
HC,,,. In general, when sample size is large and the
predictors are normally distributed then relative
probability discrepancy for the all four considered HC
estimators 1s closer to each other. For small sample size,
the approximation of asymptotic chi-square distribution of
the quasi test statistic 1s poor especially at the tail for HC,
and HC|. The quasi test statistic has heavy left tail when
defined on HC,, while the situation is opposite for HC,.
Interestingly, HC|, especially for small sample size, has
generally negative relative probability discrepancy and
the amount of relative probability discrepancy does not
seem to depend on the nominal size of the asymptotic
distribution.

Our simulation results confirm the numerical results
of the [10] that the asymptotic approximation of the HC,,,
is better than others. Particularly this deficiency looks
more intense in the HC, estimator based test statistic.
But according to our results the performance of the HC,
is also efficient especially for small sample size. [16] also
suggested the use of HC,; when sample size 1s less then or
equal to 250,. The results obtained clearly favor the use of
newly purposed HC,,, m hypothesis testing mference.
It 15 also concluded that when the sample size 1s large,
n = 500 the performance of all the estimators becomes
approximately same.
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