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Abstract: This paper has provided a brief introduction to the use of Green’s functions for solving Ordinary
and Partial Differential Equations in different dimensions and for time-dependent and time independent 
problem. Under many-body theory, Green’s functions is also used in physics, specifically in quantum field 
theory, electrodynamics and statistical field theory, to refer to various types of correlation functions, even 
those that do not fit the mathematical definit ion.
George Green (14 July 1793-31 May 1841) was largely self-taught British mathematical physicist who 
wrote "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and 
Magnetism (Green, 1828)". The essay introduced several important concepts, among them a theorem
similar to the modern Green's theorem, the idea of potential functions as currently used in physics and the 
concept of what are now called Green's functions. George Green was the first person to create a
mathematical theory of electricity and magnetism and his theory formed the foundation for the work of 
other scientists such as James Clerk Maxwell, William Thomson and others.
His work ran parallel to that of the great mathematician Gauss (potential theory).
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INTERODUCTION

Definition: Consider first the one-dimensional problem 
of a thin rod occupying the interval (0, a) on the x axis
[3-6, 9]. We obtain 

( ) ( )

2

2

d u
f(x) 0 x 1

dx
u 0 u 1

= < <

= α = β
(1)

where ƒ(x) is the prescribed source density (per unit 
length of the rod) of heat and α, β are the prescribed 
end temperatures. The three quantities {ƒ(x), α, β} are 
known collectively as the data for the problem. The 
data consists of the boundary data α, β and of the 
forcing function ƒ(x).

We shall be concerned not only with solving (1) for 
specific data but also with finding a suitable form for 
the solution that will exhibit its dependence on the data. 
Thus as we change the data our expression for the 
solution should remain useful. The feature of (1) that

enables us to achieve this goal is its linearity, as 
reflected in the superposition principle: 
If u1(x) is a solution for the data {ƒ1(x), α1, β1} and 
u2(x) for the data {ƒ2(x), α2, β2} then ( ) ( )1 2Au x Bu x+

is a solution for the data

( ) ( ){ }1 2 1 2 1 2Af x Bf x ; A B ,A B+ α + α β + β

In practice, the superposition principle permits us 
to decompose complicated data into possibly simpler 
parts, to solve each of the simpler boundary value
problem and then to reassemble these solutions to find 
the solution of the original problem. One decomposition 
of the data which is often used is 

( ){ } ( ){ } { }f x ; , f x ;0,0 0; ,α β = + α β

The problem with data {ƒ(x), 0, 0} is an
inhomogeneous equation with homogeneous boundary 
conditions, the problem with data {0; α, β} is a
homogeneous equation with inhomogeneous boundary 
conditions.
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We show how the superposition principle or other 
methods lead to the following form for the solution of 
(1):

1

0
u(x) g(x, )f( )d (1 x) x= ξ ξ ξ + − α + β∫ (2)

Where Green’s function g(x, ξ) is a function of the real
variables x and ξ defined on the square 0≤x, ξ≤1 and is 
explicitly given by

x(1 ) 0 x
g(x, ) x (1 x )

(1 x) x 1< >

− ξ < < ξ
ξ = − = ξ − ξ < <

(3)

Here x< stands for the lesser of the two quantities x
and ξand x> for the greater of xand ξ.

In Fig. (1a) we picture Green’s function as a
function of x for fixed ξ and in Fig. (1b) as a function 
of x and ξ. Thus Fig. (1a) can be viewed as a cross
section of the surface in Fig. (1b)

Now, Consider the problem of the forced,
transverse vibrations of a taut string of length
l. If the time-dependent parts of the solution are first 
removed by the usual separation-of-variation technique, 
we obtain the following differential equation containing 
the transverse displacement of the string, u, as
unknown;

2
2

2

d u
k u f(x) ,0 x l

dx
+ = − < < (4)

If the ends of the string are kept fixed, then this 
equation must be solved for u subject to the boundary 
conditions:

u(0) u(l) 0= = (5)

To solve the boundary value problem posed
by the ordinary second-order differential equation
(4) and associated boundary conditions (5), we
will employ the method of variation of parameters. That 
is, we will assume that a solution to the problem
actually exists and that, furthermore, it has the precise 
form:

( ) ( ) ( ) ( ) ( )u x A x Cos kx B x Sin kx= +

Thus, we can write the solution of (2) in the form

1 2

x x

c c

cos(kx) sin(kx)u(x) f( ).sin(k )d f().cos(k )d
k k

= ξ ξ ξ− ξ ξ ξ∫ ∫ (6)

where c1 and c2 are constants which must be so chosen 
as to ensure  that the boundary conditions (5) are
satisfied. We see that the solution (6) can be written in 
the form

x

0

l

0

x

0

l

x

1u(x) f ( )s in(k ( x))d
k
sin(kx) f ( )s in(k( l))d

k.sin(kl)
sin(k ).sin(k(l x))f ( ) d

k.sin(kl)
sin(kx).sin(k(l ))f ( ) d

k.sin(kl)

= ξ ξ − ξ

− ξ ξ − ξ

ξ −= ξ ξ

−ξ+ ξ ξ

∫

∫

∫

∫

(7)

l

0
f ( ) g ( x , )d= ξ ξ ξ∫ (8)

Equation (8) is obtained from (7) by introducing 
the function g(x, ξ) defined as 

sin(k ).sin(k(l x))
g(x, ) 0 x

k.sin(kl)
sin(kx).sin(k(l ))

g(x, ) x l
k.sin(kl)

ξ −
ξ = ≤ ξ ≤

− ξ
ξ = < ξ ≤

This function, g(x, ξ), is a two-point function of 
position known as the Green’s function for the equation 
(4) and boundary conditions (5). Its existence is assured 
in this particular problem, provided that Sin (kl) ≠ 0
.

In the general case, the differential equation we 
consider here is  [1, 2, 4, 18]

L[y] f(x) 0, a x b+ = < < (9)

First, we consider here the following boundary 
value problem with homogeneous differential equation:

L[y] 0
y(a) 0,y(b) 0

=
 = =

where
d dL[y] p(x) q(x)y
dx dx

 ≡ + 
 

We assume here that p(x), q(x) and ƒ(x) are known 
and analytic on (a,b) and ƒ(x) may be singular at x = a,b 
provided that the equation is defined properly.

Let y1 and y2 be fundamental solutions of L[y] = 0
which satisfy y1(a) = 0 and y2(b) = 0, respectively. Then
the Green’s function can be written
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( ) 1 2

1 2

y ( ) y ( x ) ,  x
g x,

y ( x ) y ( ) ,         x
ξ ξ ≤

ξ =  ξ ≤ ξ
(10)

Under these preliminaries the solution of the
boundary value problem of inhomogeneous equation
(9) is expressed as follows:

b

a
u(x) f ( )g (x , )d= ξ ξ ξ∫ (11)

Characterized of green’s function: We have therefore 
characterized Green’s function g(x, ξ) both physically 
and mathematically [1, 3], let us recapitulate what has 
been done so far.

1. Physically description. We chose to describe g in 
terms of heat conduction in a rod: g(x, ξ) is the 
temperature at x when the only source is a unit 
concentrated source at ξ, the ends being at 0
temperatures. It is also possible to interpret g as the 
transverse deflection of a string: g(x, ξ) is the 
deflection at x when the only load is a unit
concentrated force at ξ, the ends being kept fixed 
on the x axis at x = 0 andx = 1.

2. Classical mathematical formulation. Green’s
function g(x, ξ) associated with (1) satisfies 

1

0),1(),0(

1,002

2

−=−=′−+=′

=
==

<<<<=−

xgxg

xatcontinuousg
gg

xx
dx

gd

(12)

In our third formulation we would like to consider 
(12) as a boundary value problem of the form (1) with 
specific data. The boundary data for g clearly
vanishing, but what is the forcing function?

3. Delta function formulation.
Green's function g(x, ξ), of a linear differential

operator L = L[x] acting on distributions over a 
subset of the Euclidean space ℜn, at a point ξ, is any 
solution of

Lg(x, ) (x ) 0 x 1, 0 1
g(0, ) g(1, ) 0

ξ = δ −ξ < < < ξ <
ξ = ξ =

(13)

where δ is the Dirac delta function. 
This property of a Green's function can be

exploited to solve differential equations of the form

Lu(x) f(x)=

If the kernel of L is non-trivial, then the Green's 
function is not unique. However, in practice, some
combination of symmetry, boundary conditions and/or
other externally imposed criteria will give a unique
Green's function. Also, Green's functions in general are 
distributions, not necessarily proper functions

Green's functions are also a useful tool in solving 
wave equations, diffusion equations and in quantum 
mechanics, where the Green's function of the
Hamiltonian is a key concept, with important links to 
the concept of density of states. As a side note, the 
Green's function as used in physics is usually defined 
with the opposite sign; that is

Lg(x, ) (x )ξ =−δ − ξ

This definition does not significantly change any of 
the properties of the Green's function

If the operator is translation invariant, that is when 
L has constant coefficients with respect to x, then the 
Green's function can be taken to be a convolution 
operator, that is

g(x, ) (x )ξ = δ − ξ

In this case, the Green's function is the same as the 
impulse response of linear time-invariant system theory

APPLICATIONS OF GREEN'S FUNCTION

The green’s function for initial-value problems
Definition of the green’s function: Choose x = 0 at the 
initial point [1, 2] and write the ICs as

(0) , (0)′Ψ = α Ψ = β (14)

The problem is to find a solution of 

( ) ( )L x f xΨ =

subject to (1), valid for all x≥0, for arbitrary ƒ(x).
The strategy is to satisfy (14) with an appropriate 

complementary function ( )c cL 0Φ Φ =  and to define a 
Green’s function so that it delivers a particular integral 
that does not again upset the ICs . Thus we require 

c pΨ = Φ + Ψ (15)

c c(0) , (0)′Φ = α Φ = β (16)
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p p(0) 0, (0) 0′Ψ = Ψ = (17)

In the special case of homogeneous ICs , i.e.
α = 0 = β, one can set Φc =  0, i.e. one needs no 
complementary function at all.
We write the particular integral as 

p 0
(x) g(x, )f( )d

∞
Ψ = ξ ξ ξ∫ (18)

where g obeys (13) (like all Green’s functions); in order 
to guarantee (17) irrespective of ƒ, we demand in 
addition

xg(0, ) 0, g (0, ) 0ξ = ξ = (19)

Clearly, for the present we are considering g(x, ξ)
as a function of x, with ξ merely a parameter.

Construction of green’s function: g(x, ξ) is defined
by (13) and (19). To construct it, observe that it obeys
Lg = 0 for all x expect x = ξ. For x < ξ and x > ξ, g can
therefore be expressed as a linear combination of any 
pair Φ1, Φ2 of linearly independent solution of LΦ = 0,
though generally a different combination in the two
regions. The pair Φ1, Φ2 can be chosen freely, without 
any reference to Φc (though of course Φc is necessarily 
expressible as a linear combination of them).

We deal separately with the two regions x<ξ, x>ξ
and then match the solutions across x = ξ.
In the region 0≤x<ξ,

g(x, ) 0          (x )ξ = < ξ (20)

In the region ξ<x, write 

1 2g(x, ) A (x) B (x) ( x)ξ = Φ + Φ ξ < (21)

The solutions (20, 21) are matched across x = ξ as 
described in Section (2.1).

In our present IVP, (20) shows that g(x, ξ)
vanishes for all x<ξ; so consequently does ( )g x, x∂ ξ ∂ .

In particular, this is still true at x = ξ-; therefore the 
continuity and jump conditions reduce to 

x

g( , ) 0, g(x, ) 1
x +

+

=ξ

∂
ξ ξ = ξ = −

∂
(22)

It remains only to determine A and B satisfying 
(22), They give, respectively, 

( ) ( )1 2A B 0Φ ξ + Φ ξ =

and
( ) ( )1 2A B 1′ ′Φ ξ + Φ ξ = −

or in other words 

( ) ( )
( ) ( )

1 2

1 2

A 0
B 1

 Φ ξ Φ ξ    
=     ′ ′Φ ξ Φ ξ −    

(23)

These are two simultaneous, linear,
inhomogeneous algebraic equations for the two
unknown A and B. thus there exists a unique solution 
provided only that 

[ ] ( ) ( ){ } ( )1 2det W , W 0= Φ ξ Φ ξ ≡ ξ ≠

which is so, simply because Φ1, Φ2 are linearly
independently. The solution is 

2 1( ) ( )A ,  B
w ( ) w( )
Φ ξ Φ ξ

= = −
ξ ξ

(24)

We amalgamate (20) and (21) into 

( ) ( ) ( ) ( ){ }1 1g x, H x, A x B xξ = ξ Φ + Φ

substitute for A and B from (24) and write the result 
explicitly:

2 1 1 2( ) (x) ( ) (x)
g(x, ) H(x ).

w( )
Φ ξ Φ −Φ ξ Φ

ξ = − ξ
ξ

(Be careful to distinguish primes (on ξ) from deriva-
tives (Φ′).)
Thus the solution to our IVP reads

c 0
(x) (x) H(x )g(x, )f( )d

∞
Ψ =Φ + −ξ ξ ξ ξ∫

Or
x

c 0
(x) (x) g(x, )f( )dΨ =Φ + ξ ξ ξ∫

The green’s function for boundary-value problems:
For BVPs, unlike IVPs, a Green’s function may not 
exist, either because the problem has no solution, or 
because the solution in not unique.

For simplicity [1], in the present section we confine 
ourselves to homogeneous BC's

( ) ( )1 2x 0 xΨ = = Ψ (25)
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The problem is to solve, in the range 1 2x x x≤ ≤ ,

( ) ( )L x f xΨ =  subject to (25), for arbitrary ƒ(x). It will 
appear presently that the existence and nature of the 
solution depend critically on whether the associated 
homogeneous problem 

L 0Φ = (26)

subject to the same (homogeneous) BC's has a solution. 
We shall distinguish between the general case, where 
(26) has no solution and the special case, where it has.
The strategy is to look for Ψ in the form 

2

1

x

x
(x) g(x, )f( )dΨ = ξ ξ ξ∫ (27)

where

1 2

Lg(x, ) (x )
g ( x , ) 0   ,   g(x , ) 0

ξ = δ − ξ
ξ = ξ =

(28)

This g obeys the same differential equation as did 
the (different) g in the IVP's, but now it satisfies the 
BC's (5b,c) inspired by (25).

We construct g from the solution of the homogene-
ous equation (26), which is satisfies by g for x<ξ and
x>ξ. Let Φ1 be a solution that obeys the left -hand BC; 
let Φ2 be a solution that obeys the right-hand BC:

1,2 1 1 2 2L 0,  (x ) 0, (x ) 0Φ = Φ = Φ = (29)

We do not yet know whether Φ1 and Φ2 are 
linearly independent.
Comparing (29) with (28) we see that g is of the form 

1 2g(x, ) H( x).C. (x) H(x ).D. (x)ξ = ξ − Φ + − ξ Φ (30)

since this satisfies both the BC's, whatever the values of 
the constant C and D.

C and D are determined by matching across x = ξ,
exactly as for the IVP in Section (2). The continuity and 
jump conditions are identically the same as before; they 
yield, respectively, 

( ) ( )2 1D C 0Φ ξ − Φ ξ =

and
( ) ( )2 1D C 1′ ′Φ ξ − Φ ξ = −

Thus
( ) ( )
( ) ( )

1 2

1 2

C 0
D 1

 −Φ ξ Φ ξ    
=     ′ ′−Φ ξ Φ ξ −    

(31)

Naturally one hopes that (31) has a unique solution. The 
condition for this is 

[ ] { }
{ }

1 2 2 1

1 2

det ( ) ( ) ( ) ( )

 w ( ), ( ) w( ) 0

′ ′= −Φ ξ Φ ξ + Φ ξ Φ ξ

= − Φ ξ Φ ξ ≡ − ξ ≠

If it is satisfied, then the solution reads 

1 2( ) ( )
D , C

w( ) w( )
Φ ξ Φ ξ

= − = −
ξ ξ

Whence
{ }

{ }
2 1 1 2

1 2 1 2

H( x) ( ) (x) H(x ) ( ) (x)
g(x, )

( ) ( ) ( ) ( )
ξ− Φ ξΦ + − ξΦ ξΦ

ξ = −
′ ′Φ ξ Φ ξ − Φ ξ Φ ξ

(32)

In the general case, W≠0, our problem is solved, by 
(4,10). In full, the solution reads 

2

1

2 1

x 1 2

x

H( x) ( ) (x)
H(x ) ( ) (x)

(x) f ( ) d
w( )

ξ − Φ ξ Φ 
 + − ξ Φ ξ Φ Ψ = − ξ ξ

ξ∫ (33)

In the special case, W = 0 expresses the fact that Φ1

and Φ2 defined by (26) are actually the same function: 
in other words, the corresponding homogeneous
problem ( ( ) ( )1 2L 0, x 0 xΦ = Φ = = Φ ) then has a solution 
(satisfying both BC's and not only one). In this special 
case, g does not exist, whence our attempt at a solution 
in the form (4) fails. Again there are two possibilities:

(i) Either the general special case, where the
inhomogeneous problem has no solution; in fact it 
has none unless ƒ(x) satisfies some constraints;

(ii) Or the special case, where ƒ(x) does satisfy these 
constraints.

Then our inhomogeneous problem has solution, but 
they are not unique: in fact there are infinitely many. 
Obviously so: for if we have one solution to the
inhomogeneous problem, then we can add to it any 
numerical multiple of the solution to the corresponding 
homogeneous problem and the result still satisfies all 
the requirements (i.e. both the equation and the BC's).

NUMERICAL METHOD OF
GREEN’S FUNCTION 

There have been several methods for numerical
solution of boundary value problems with ordinary 
differential equation [18]. The shooting method is a 
traditional one and the implicit finite difference method 
is also one of the useful tools  [15-18, 21-23].

In [22, 23] proposed since collocation methods
based on the double exponential transformation. 
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A method for numerical solution of boundary value 
problems based on the classical method of Green’s 
function incorporated with the double exponential
transformation is presented. Although the method of 
Green’s function is a classical one for analytical
manipulation of solution of boundary value problems 
with differential equation, the method presented here 
gives an approximate solution of very high accuracy 
with a small number of function evaluations.
The differential equation we consider here is

L[u] f(x) 0, a x b+ = < < (34)

where u(x) is the function to be determined and L[u] is 
a self-adjoint operator associated with the Sturm-
Liouville eigen-value problem defined as

d dL[u] p(x) q(x)u
dx dx

 ≡ + 
 

(35)

We assume here that p(x), q(x) and ƒ(x) are known 
and analytic on (a,b) and ƒ(x) may be singular at x = a,b
provided that the equation is defined properly.
We also assume that p(x)>0 on (a,b). For the moment 
we assume that the boundary condition is
homogeneous, i.e.

u(a) 0,  u(b) 0= =

However, if p(x) vanishes at x = a or x = b we can 
impose there an inhomogeneous boundary condition

u(a) finite 0, u(b) finite 0= ≠ = ≠

The integral we want to evaluate is (11), i.e.

x b

a x

1 2

u(x) f ( )g(x, )d f ( )g(x, )d

 J ( x ) J (x)

= ξ ξ ξ + ξ ξ ξ

= +
∫ ∫ (36)

from (10).
If we approximate J1(x) and J2(x) by double

exponential formula, abbreviated as the DE formula, for 
indefinite integral [18, 24], we immediately have (mesh 
size h)

( ) ( )

( ) ( )

N

2 1
j N

1

N

1 2
j N

1

N

u(x) y ( x ) h y (jh) f (jh) (jh).

1 1 (x)
 Si xj

2 h

 y(x)h y (jh) f (jh) (jh)

1 1 (x)
 Si xj E

2 h

=−

−

=−

−

′= ψ ψ ψ

  ψ
+ π −   π   

′+ ψ ψ ψ

  ψ
− π − +   π   

∑

∑
(37)

Where

b a b a
(t) tanh( .sinht)

2 2 2
− π +

ξ = ψ = +

and d>0 is interval when, g(ψ(t))ψ′(t) is regular in the 
strip |Im t|<d and

t

0

sin
Si(t) d

τ
= τ

τ∫
and

1 2d
N log

h h( )
=

α − ε
(38)

and EN is the error term given by

N
Nd

E O exp
log(2Nd/( ))

  π
= −   α − ε  

(39)

We first gave h and then determined N by (38).
However, if we want to give first N then to determine h,
it should be determined

1 2Nd
h log

N
=

α − ε
(40)

This is the DE formula for numerical solution of
the boundary value problem (9) with homogeneous
boundary condition. Since we can compute

( ) ( )1y (jh) f (jh) (jh)′ψ ψ ψ  and ( ) ( )2y (jh) f (jh) (jh)′ψ ψ ψ

beforehand for each j, what we have only to 
compute for a given x is 1 2y(x) ,y(x) and

( )11 /2 Si (x)/h xj /−+ πψ − π  and their product sum. Thus, 

this formula for x consists of evaluations of simple 
functions and their sum, so that the present method is 
suitable for parallel computation. Also note that if x is 
equal to one of the sinc points, i.e., x = ψ(kh) for some 
integer k,

( ) ( )1Si (x)/h xj Si (k j)−πψ − = π −

holds and computation of Si becomes very simple.

RESULTS AND DISCUSSION

Infinite domain: Consider the case when the source 
term is zero and the volume of interest is the infinite 
domain, so that the surface integral is zero. Then we 
have

( ) ( ) ( ) 3
0 0 0

v

u r , t a u r G r | r , t d r= ∫
    
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In one dimensional, this reduces to 

( ) ( ) ( )
2

0
0 0

x xau x , t exp a u x dx t 0
4 t 4t

∞

−∞

 −
 = − >
 π  

∫

Thus we see that the field u at a time t>0 is given 
by the convolution of the field at time t = 0 with the 
Gaussian function 

2a ax
exp

4 t 4t
 
− π  

Numerical examples: The interval of definition of the 
problem is (0, 1). We first chose N = 4,8,16,32,… and
computed h by (40). For each N we evaluated u(x) by
means of the formula (37) for

x  0.01, 0.02, 0.03, . . . , 0.97, 0.98, 0.99= (41)

and picked up the maximum absolute value of the error. 
Since in the integrand of (37) the singular points which 
lie nearest to the real axis are the poles of

2

cosht
(t)

4cosh ( /2sinht)
π′ψ =

π

with the distance π/2, we set d = π/2. In order to show 
the high efficiency of the present formula we carried
out numerical computation with quadruple precision 
arithmetic.
Let

1 12
2 2

2
d u 3 x (1 x) 0
dx 4
u(0) 1   ,   u(1) 0

− −  
− + − =  

  
 = =

(42)

Here we take
2

2

d u
L[u]

dx
= (43)

and the Green’s function corresponding to (43) is

1 2y ( x ) x ,  y (x ) 1 x= = − (44)
i.e.

(1 x)  x
g(x, )

x(1 )         x
ξ − ξ ≤

ξ =  −ξ ≤ ξ
(45)

The exact solution of this problem is

3 3
2 2u(x) x (1 x) 1= + − − (46)

In this example, as ξ tends to 0,

( ) ( )1 / 2 1 /2 1 / 2f ( ) 3 /4 (1 ) O− − −ξ = − ξ + − ξ = ξ

from (42) and y1(ξ) = O(ξ) from (44), so that

1 /2 1
2 1g( ) y ( )f( ) y ( ) O( ) O( ), 3 / 2− + αξ = ξ ξ ξ = ξ = ξ α =

Fig. 2: The maximum error

holds. In a similar way we see that as ξ tends to 1 
1 / 2g( ) O((1 ) )ξ = − ξ . In this way we chose α = 3/2 for 

(38), (39) and (40).
We chose N = 4,8,16,32,64,76 computed numerical 

solution for x’s given in (41) and plotted the maximum 
absolute error of the numerical solution as a function of 
N in Fig. 2. Although ƒ(x) of this problem is singular at 
x = 0 and 1, the result is very good. Actually, the error 
decays almost exponentially as given in (39) and attains 
about 10-30 with N = 76.
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