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 Functional, Linear Functional, Multiplicative linear Functional and research on continuity of 
these Functional are very important in advanced studies on topological algebras and mathematical analysis. 
Our main purpose will be researching to obtain some results about automatic continuity and boundedness 
of these functional on LMC (locally multiplicatively convex) spaces. We will try on Ernest.A.Michael's 
questions. He introduced two problems in 1952 which nobody has been found the exact answers yet. 
These questions are: 
 
1. Is every commutative F-Algebra functionally continuous? 
2. Is every multiplicative linear functional on a commutative complete locally m-convex algebra 

bounded? 
 
  Complete locally m-convex � Ernest. A. Michael�s questions 

 

 
Some  main  definitions  and  concepts  we  must 

know are outlined in first step (Section2). In the next 
step we will recognize some main properties of these 
functionals. Especially we will answer the question 
�What are the necessary conditions for a topological 
algebra X to linear functionals on X be 
multiplicative?�[1-5] But can we always define any 
homomorphism on a topological space? What are the 
main conditions for these spaces to accept these type of 
functionals? Results are in section 4. And in the final 
step the automatic continuity conditions of these 
functionals are under test and investigation [6-9]. 
 

   
 

  On a space X with field such 
(usually C/ ) a linear operator :X called 
multiplicative if (xy)= (x) (y) x,yX. 
 
  Let (X, ) is a topological vector space. 
Then  
 
a) X is locally convex if it has a locally base with 

convex elements. 
b) X is locally bounded if there is a bounded 

neighborhood of 0 in X. 
 
  (X, ) is a F-Space when it is a 
complete metrizable topological vector space. 

  X is a Frechet space when X be a 
locally convex F-Space. 
 
  A subset U from space(algebra) A 
called idempotent if UU U. 
 
  A subset U from space(algebra) A 
called m-convex (multiplicatively convex) when U is 
convex and idempotent. 
 
  A topological algebra A called locally 
multiplicatively convex if there is a base of 
neighborhood of 0 which contains symmetric m-convex 
subsets. We show this A with LMC Algebra. 
 

      

   

 
n

n 0

aexp(a)
n!=

=

exp(A) {exp(x) : x A}=

A ={ :A | is multiplicative} (A is an algebra on 
field ). 
We know for every A:

1. (1A)=1  
2. 1(a) 0 ( a A )  
3. Ax A, ; (exp(x)) 0
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  Let A be a commutative Banach algebra 
with 1 and a Linear Functional on A such that  
 

x A, (exp(x)) 0, (1) 1=

Then A that means is multiplicative. 
 
 At   first   we   show   that   is  continues  on  
A. Let x A with ||x||<1. (Lemma: x A, 1-x <1 
( y A,exp(y) x= )) so If C/ , | | 1 then  
 

xx x1 (1 ) 1= = <

 
and so  

x1 exp(A)

and  
x(1 ) 0

this means  
(x) 0 ( 1)

But || ||=1 so | (x)|<!. In fact  
 

x A x l (x) 1< <

Now if 0< we take = and then  
 

1 1x ( x x 1 ( x) 1 (x) )< = < < <
 

that means is continues on A. Now we show that  
 

2 2x A, (x ) ( (x))=

Let x A and C/ ,

F( ) (exp( x))=  

So F : C C/ / and  
 

n nn n )
F( ) ( )

n! n!
( xx= =

so F is an Entire Function such that C/ , �( ) 0. 
Also  
 

n nx
F( ) ( ) exp( x )

n!
=

so we can write F = exp(G) in which G is an Entire 
Function such that  

 
C;ReG( ) x/

and since F(0)=1 from real part of Lyovil Theorem we 
can say G(0)=0. So for a constant value such t we can 
write G = tz and  
 

n n
tz n nt tF(z) exp(G(Z)) e z F(z) z

n! n!
= = = =

The result is  
 

n n n( n N) : (x ) t ( (x))= =

and for n=2 we have (x2) = ( (x))2. Now is 
multiplicative because: 
 

2 2

2 2 2 2

x,y A :
1(xy) ( ( [(x y) (x y) ])
4

1 1( [(x y) )) (x y) ) ( ((x y) ( (x y) )
4 4

= +

= + = +

 

2 2

2 2

2 2

1 ( (x) (y) ( (x) (y) )
4
1 ( (x) ( (y) ) 2( (x) (y))
4

( (x) ) ( (y) ) 2 (x) (y))
1 (4 (x) (y)) (x) (y)
4

= +

= + +

+

= =

 

  (Gleason-Kahan-Zelazko) Let A be a 
complex  Banach  algebra  with  unit  element  e  and 
be a linear functional on A such that (e) = 1. If a A-1,

(a) 0 Then x,y A: (xy) (x) (y)= .

  An commutative Banach algebra B is 
Semi-simple when  
 

Bb B \{0}, , (b) 0

  Let A is a complex Banach algebra and 
B is an commutative semi-simple Banach algebra and 
T: A B be a linear function such that T(eA) = eB and 

1 1a A ;T(a) B  Then T is Multiplicative. 
 
 Let G B, a1, a2 A so GOT is a linear 
functional such that  
 

1a A ,GOT(a) G(T(a)) G(b)= =  

where b B-1. so GOT(a) 0 because a A-1 and GOT is 
linear functional and so GOT is multiplicative from the 
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Gleason-Kahan-Zelazko theorem. Therefore  
 

1 2 1 2 1 2G(T(a a ) T(a )T(a )) GOT(a )GOT(a )=

so  
1 2 1 2T(a a ) T(a )T(a ) 0=

because B is semi-simple. And this means T is 
Multiplicative. 
 

      

    

  

 
We can always define a multiplicative linear 

functional on a commutative complete normed 
algebra(commutative Banach algebra). In fact: 
 
  Let  be a maximal modular ideal with 
co-dimension 1 for a Banach algebra A Then there is a 
multiplicative linear functional :A such that 
=ker( ).  
 But now we find some examples will show us these 
functionals cannot always be defined on non-
commutative spaces: 
  Let  
 

a b
A { ;a,b,c C}

0 c
= /

 
Clearly A is a non-commutative algebra with unit 

element 
1 0

I
0 1

= and dim (A) = 3 and with a norm 

such as  
 

2 2 2a b a b
a b c A

0 c 0 c
= + +

 
A is a Banach algebra. We can define 1 : A C/

with 1(M) = m1 when  
 

1 2

3

m m
M A

0 m
=

 

It is easy to show that 1 is a multiplicative linear 
functional. 
 
  Let  
 

a b
A { : a,b,c,d C}

c d
=

 

A is a non-commutative algebra with unit element 
1 0

I
0 1

= . But you never can define a multiplicative 

linear functional on A !. In fact if A be an algebra of 
square matrices of order n, then there is no 
multiplicative linear functional :A .

Another spaces always accept these functionals are 
LMC spaces. In the other hand: 
 
  Let A be a commutative LMC algebra 
and  a closed regular maximal ideal of A. Then there is 
a continues multiplicative linear functional :A
such that ker( )=.

 Every LMC algebra such A is a normed division 
space so A and complex numbers algebra( C/ ) are 
isomorphic. So there is no Homeomorphism on A 
unless the Identity function (x)=x ( xA) and clearly 

is a continues multiplicative linear functional. Now 
theorem4.1 gives us ker( )=. (Remark: Every 
Homeomorphism is a continues multiplicative linear 
functional.) 
 

   

   

 
  A topological space X is F.C. 
(Functionally continues), when every multiplicative 
linear functional on X be continues. 
 At first step we show an arbitrary topological space 
is not F.C. necessary. 
 
  Let A=C([0,1]) algebra of all continues 
functions on [0,1] and  
 

t
P(f ) f (t) , (0 t 1)=

Every Pt:A + is a Semi-norm and A is a 
topological algebra with the topology generated by the 
family of {Pt: 0<t1}. Define :A C/ with (f)=f(o). 

is a multiplicative linear functional on A that is not 
continues. 
 
 f ,g A, C/ : (�+g)= (�+g)(0)=�(0)+ 
g(0)=  (�)+ (g) and (�g)=(�.g)(0)=�(0).g(0)= 
(�). (g). Let  
 

i i
1V(p ,n) {f A : p (f ) }
n

= <

and  
S {V(P,n) : n N, t N, t (0,1]}=  
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S is a base for the topology defined on A. Now we 
show if f0A then is not continues at f0. It is enough to 
prove  
 

i 0 0
10, t, n , f A ; p (f f ) & (f f )
n

> <

And cause of A is a topological space that is 
enough to prove is not continues at 0. That means  
 

0 , t (0,1], n N, f A>

t
1p (f ) & (f )
n

<

Let 1
2

= , 0<t 1 and n N. So  

 
k 1K N;(1 t)

n
+ <

now let f : [0,1] C/ with 
 

k

1f (x)
(1 x)

=
+

� A and  
k

t
1p (f ) f (t) (t 1)
n

= = + <

then we can write  
1(f ) f (0) 1
2

= = =

that means is not continues at 0 and so on A. 
 
  
 
a) Conditions Continuity and Boundedness of 

operators on Normed spaces are equivalent. 
b) Continuity on a Normed space such X and 

Continuity at a point of X are equivalent. 
 

Therefore even normed topological algebras are 
not F.C. necessary. In fact it seems completeness is a 
necessary condition for normed spaces to be F.C. 
 

  Let A={P(x): x [0,1], P is a 
polynomial}. Define the supermom-norm  
 

: A R

P SUP{ P(x) : x [0,1]}=

So A is a normed algebra with this norm. We will 
show A is not complete and therefore is not F.C. 

 
 Let  

kn

n
k 1

xn N,P (x)
k!=

=

([0,1]) so n, PnA and (Pn) is a Cauchy sequence 
convergence to e . In fact Pn(x) ex but ex A that 
shows A is not complete. Now let : A C/ with (p) = 
P(a). Clearly is multiplicative linear functional but we 
will prove that is not continues. From Remark5.3. it is 
enough to show is not bounded. We have  
 

sup{ (p) : P A, P 1}=

so with definition pn(x) = en, (Pn) is a sequence with 
elements of A such that ||pn|| 1 and  
 

n
n(p ) 2=

so is not bounded. Equivalently is not continues and 
so A is not F.C. 
 It has been proved that every commutative Banach 
algebra is F.C. 
In particular 
 
  Let A be a commutative Banach algebra 
and a multiplicative linear functional on A. Then: 
 
a) is continues and || || 1. 
b) If A be unital then A A(1 ) 1 1= = .

In the extended position we claim following theorem: 
 
  If :B A be a multiplicative linear 
functional when B is a commutative Banach algebra 
and A is a semi-simple commutative Banach algebra, 
then is automatically continues. 
 
 Let (xn) be a sequence in B such that xn x. 
Cause of completeness of B, x B. Follow the sequence 

(xn) in A and suppose (xn) y. From the closed graph 
theorem  it  is  enough  to  prove y = (x). Let h A and 
 = ho therefore B because:  
 

t, b B, (tb) ho (tb) h( (tb)) h( (t). (b))
(ho (t)).(ho (b)) (t). (b)

= = =
= =   

 

and 
( t b) (ho )( t b) h( (t) (b))

(ho (t) ho (b)) (t) (b)
+ = + = +

= + = + 

A and B is Banach algebras so h and  are 
continues and so  
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n n n

A

A

h(y) h(lim (x )) lim (x ) (lim x )
(x) h( (x)) ( h )

h(y (x)) 0( h ) y (x) rad(A)

= =  =  
=  =

=
 

A is   semi-simple   so   rad (A) = {0}  and  then 
y- (x) = 0 that means y = (x). 
 Following example shows that an LMC space is 
not necessary F.C. 
 
  Let T be a non-compact set but locally 
compact or prime countable set and A=C(T) with 
compact-open topology. Then 
 
a) A is a commutative complete LMC algebra. 
b) A is not F.C. 
c) Every multiplicative linear functional on A is 

Bounded. 
 
  Let A be a LMC algebra and  
 

AR(A) {x A : f (x) 0 , f }= =

1) If A be complete and commutative and algebra 
A/R(A) be F.C. then A is F.C. 

2) If A be an ideal of LMC algebra B and B be F.C. 
then A is F.C. 

 
 

 
1) Let � be a multiplicative linear functional on A. so 

x R(A),f (x) 0= . so if :A A/R(A) be the 
natural mapping ( is multiplicative and always 
continues) then there is a multiplicative linear 
functional g on A/R(A) such that � = go. Cause of 
A/R(A) is F.C. then g is continues and so � = go
is continues. Therefore A is F.C. 

2) Let � be a multiplicative linear functional on A. 
The algebra C/ is unital and f : A C/ is a 
Homomorphism. So there is a an Extension of � 
such g:B C/ that g is multiplicative linear 
functional too. B is F.C. so g is continues on B. 
Therefore � g is continues too. Then A is F.C. 

  A topological vector space X is 
Fundamental, when there is a b>1 such that for every 
sequence (xn) in X, bn(xn-xn-1)0 if and only if (xn) be a 
Cauchy sequence. 
 
  A Fundamental topological algebra X 
is called FLM (Fundamental locally multiplicative)  
 

k
0 0U N( ) , V N( ) , m N, K m , U V

  Let A be a complete metrizable FLM 
algebra and :A¢ a multiplicative linear functional on 
A. then is automatically continues. In the other hand 
every complete metrizable FLM algebra is F.C. 
 
 Let be a nonzero multiplicative linear 
functional on A, b>1 and x A such that bnxn0. Let  
 

n
k

n
k 1

S x
=

=

A is complete and (Sn) a convergence sequence so 
there is a  
 

n
k

k 1
y x A

=

=

and we can write (note that product operator is 
continues):  
 

nn n n S

n n n n 1
k k k k

k 1 k 1 k 1 k 2
n 1

y xy limS x limS lim(S x )

lim( x x x ) lim( x x x )

x lim x x

+

= = = =

+

= =

= =

= =

Since is linear and multiplicative so (x)1
because if (x)=1 then 1= (x) = (y-yx) = (y)- (x) 

(y) = 0 that is impossible. So bnxn0 (x)1. Now 

if | (x)|>1 with choose xX
(x)

= we have  

n
n n n n n

n n

x 1b x b b x
( (x)) ( (x))

= =

so from above (xo) 1 but  
 

1(x ) (x) 1
(x)

= =

that isn't possible. So it has been proved that: 
bnxn0 | (x)|<1. now if (xn) be a null 
sequence(xn0) in A and x>0, since  
 

K( K N, K K; U V)

there is n Z+ such that b -1xn U0. so if V be a 
neighborhood of 0 then  
 

K( K N, K K; U V)

and then k k k
nb ( x ) V but V was arbitrary that means  
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k 1 k
nlimb ( x )

so | ( -1 xn)|<1 that means | (xn)|< equivalently 
(xn) 0. in fact we proved : xn0 (xn)0 that 

means is continues [10, 11]. 
 

 

 
Clearly a complete metrizable FLM algebra is an 

F-Algebra (Frechet Algebra). So multiplicative linear 
functional are automatically continues on this subset of 
F-Algebras. In fact for most approaching to the answers 
of michael's questions we can say: 
 
  Every F-Algebra with property  
 

kU N( ), V N( ), K N, K K : U V

is functionally continues. 
 Furthermore it is easy to observe this fact that 
every locally bounded topological algebra is a FLM-
Algebra. So from above concepts we can also say: 
 
  Every complete locally bounded 
topological algebra is a functionally continues F-
Algebra. 
 At the other hand every locally bounded F-Algebra 
is   F.C.  Therefore   multiplicative  linear  functional  
are automatically continues on this big subset of F-
Algebras.  
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