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Abstract: Conclusive results reveal that under given conditions, two homotopically equivalent manifolds are isomorphic. There are some examples in the book “Negatively Curved Manifolds with Exotic Smooth Structures” written by Jones and Farrell [5] which imply the lack of differentiability in negatively curved manifolds with dimensions greater than 6. There are also examples regarding the absence of PL structures for the same manifolds of dimension 6. Considering the works done in this field, we know that there are closed real hyperbolic manifolds M of dimension 6 which satisfy the following condition: For the given (>0, M has a finite covering space 
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 which ensures the existence of an exotic (or smoothable) PL structure and this structure admits a Riemannian metric with sectional curvatures in the interval (-1-(, -1 +(). In the present article we investigate the extension of this theorem for dimensions greater than 5. 
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INTRODUCTION


Differential geometry is an important division of mathematics a profound study of which requires knowledge in the fields of algebra, linear algebra, topology, complex analysis, differential equations and so forth. “Manifold geometry” is an important branch of this type of geometry which plays an infrastructural role in some branches of physics such as general relativity theory or quantum theory. 


Smooth manifolds are spaces that locally resemble some Euclidian space Rn. The largest family of manifolds, except Euclidian spaces themselves, is smooth plane curves such as circles and parabolas and smooth surfaces such as spheres, tori, paraboloids, ellipsoids and hyperboloids. 


The simplest instances of manifolds are topological ones, which are topological spaces with certain properties or to put more simply, they appear to be locally similar to Rn. Such spaces are intensively studied by topologists. 


In mechanics, when we want to study the stability of an object (say a satellite) on a trajectory in the space, we need the concepts of space curvature and its geodesic computations. Recently, even in natural sciences like biology and geology, the concept of manifolds on which a Finsler metric is defined is employed. 


In any case, regardless of a theoretical discussion about the applications of manifolds, making a comparison between two manifolds can be of great importance when examining their properties. Thus, by assuming a homotopy between two manifolds as we will see in the context, we can discuss whether they are diffeomorphic, PL-homeomorphic, or homeomorphic. 


In 1994, Pedro Ontaneda published the following theorem:

Theorem: There are closed real hyperbolic manifolds of dimension 6 which satisfy the following condition.


For the given (>0, M has a finite covering space 
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 which ensures the existence of an exotic (or smoothable) PL structure and admits a Riemannian metric   with   sectional   curvatures   in   the   interval (-1-(, -1 +(). 


To prove this theorem, he first posed an important problem in geometry and topology about being is diffeomorphic, PL-homeomorphic, or homeomorphic of two homotopically equivalent manifolds. He used Mostow’s rigidity theorem and stated that under specific conditions, these manifolds are isometric, in particular diffeomorphic. 


When manifolds have negative curvatures, the results of Elles and Sampson in [1], Hartman in [2] and Al’ber in [3] indicate that the homotopy equivalence f: M1(M2 is homotopic to a unique harmonic mapping. 


Besides, Lawson and Yau in [4] surmised that this harmonic  mapping  is  always  diffeomorphism;  but the counterexample of this surmise is provided by Farrell and Jones [5]. They prove that being is diffeomorphic,  PL-homeomorphic, or homeomorphic of    two   homotopically   equivalent   manifolds   holds

topologically when a manifold has non-positive curvature  and  dimension  greater  than  4 [6]. And again we see in [7] that this problem does not diffeomorphically hold for dimensions greater than 6. Now, it is natural to ask the question whether the problem presented for manifolds with positive curvature holds PL-homeomorphically? 


In fact, the answer to this question is that generally it does not hold for dimensions greater than 5 and we can come to the following conclusion:


For n(6, there are closed manifolds of dimension n with non-positive curvature that ensure exotic (smoothable) PL structures and admit Riemannian metrics with non-positive sectional curvatures. 

SOME TRIANGULATION LEMMAS


To begin, first we mention some triangulation lemmas. If M is a PL manifold and C is a closed subset of M (given that m = dim M(6 or dim M(5 and (M(C), then there is a one-to-one correspondence between 
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 (i.e., 
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 cohomology) and the set of concordance classes of PL structures on M which agree with the given one on a neighborhood of C. We can choose this correspondence in a way that the given PL structure is sent to 0. 


The given PL structure on M is denoted by (0 and stable classifying spaces TOP and PL microbundle structures are denoted by BTOP and BPL. Furthermore, assume that TOP/PL(B(PL(BTOP is fibration obtained from the canonical BPL(BTOP mapping. 


Let ( be another PL structure on M, which agrees with (0 on a neighborhood of C. Then, there is an n where ((Rn concords to the PL structure (, which makes M(Rn a PL microbundle on M (trivial over a neighborhood of C). This is a correspondence between concordance classes of PL structures on C (that agrees with (0 over a neighborhood of C) and gives TOP/PL(((M) rel C), which is a set of stable concordance classes (relative to C) of PL microbundle structures of the trivial bundle ((M) on 
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 [8, 9]. 


But TOP/PL(((M) rel C) is also in correspondence with Lift(( rel C, F0), that is the set of vertical homotopy classes of liftings of ( to B(PL, which classifies (: M(BTOP. It must be noted that F0: {neighborhood of C}(B(PL is a given lifting of (|neighborhood of C which classifies (0|neighborhood of C. But ((M) is a trivial bundle; thus we can choose ( as a constant map (and also F0 as constant; for microbundle structures over the neighborhood of C are trivial), so TOP/PL(((M) rel C) corresponds to [M, C; TOP/PL] (i.e.,   a   set   of   homotopy  classes  of  maps  of  M  to 

TOP/PL which sends a neighborhood of C to a previously fixed constant point). But TOP/PL is an Eilenberg-MacLane space of type (3, Z2), thus [M, C; TOP/PL] is in correspondence with 
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. Note that this correspondence depends on the PL structure that we sent to zero in 
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 and it is this choice that fully determines it. For a concordance class of triangulations [(], denote the corresponding cohomology with 

 C[τ] = C τ ϵ Ȟ3 (M,C,Z2)
and also given a cohomology class c, let [(c]=[(]c for the corresponding concordance class of triangulations. 


We  accept  the  following  lemmas without any proof [10]:

Lemma: Let 
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 be covering map, C(M closed and m = dim M(6 (or (M(C and dim M(5). Suppose M  to  be  a  PL  structure like (0, denote the pullback p*(0 of (0 by 
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 and make these two triangulations corresponding to zero in 
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 respectively. Then for each 
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 we have 

[τ]p*c = [p* τc ]

Equivalently for each PL structure ( on M, we have cp*( = p*c(. 


Note that if (1 and (2 are concordant PL structures on M, then p*(1 and p*(2 are concordant too. 


We denote the manifold CAT (= PL or DIFF) which is obtained by cutting along N by Mx and by identifying the two copies of N by (, we can see that N is a CAT closed hypersurface and (: N(N is a CAT isomorphism. We must assume that the dependent set is sufficiently nice (for example, consider a deformation retract of a subcomplex). Therefore we use singular cohomology instead of 
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 cohomology [11]. 

Lemma: Assume M to be a PL orientable n-manifold (n ≥6 ) and also assume that N is a closed PL hypersurface with a tubular neighborhood g: W
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PL N × [-1 ,1] of N in M, where  g(N) = N × {0} and J⊂ N which is open with 
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 being compact.  Then for each c(H3 (M, M\J; Z2) there is a PL isomorphism, (: N(N, where M( (that is its PL structure) corresponds to c (with a correspondence that sends the given PL structure to zero) and ( is the identity function outside a compact neighborhood of [image: image20.png]


.


Note that J  is not open in  M , but   g-1 [J × ( -δ , δ )] where δ<1 ,  is open,  and                               { M,M \ g-1 [J × ( -δ , δ )] } is a deformation retract of (M,M \ J). 

GEOMETRIC LEMMA


We consider M to be a differentiable manifold. Moreover, we consider the metric A on               M × 1 ( 1= [1,2] ) in a way as to satisfy the following condition:

For any υϵ Tχ M, A (υ , ∂/ ∂t ) = 0.

A (∂/ ∂t, ∂/ ∂t  )= 1.    

Equivalently A = St + dt2 , where St is a metric on M depending on t.

Lemma: Assume that M is compact and A = St+dt2 is a metric on M(I which satisfies the foresaid conditions. Then for a given (>0, there is an L where for (>L all sectional curvatures of A( lie in (-1-(, -1 +() and A( is a metric on M(I denoted by 

 Aα lie in (-1- ϵ, -1+ ϵ)

The proof of this lemma is similar to the lemma 5.3 of [5] which is obtained by replacing the sinh and cosh functions and replacing (m-1)-sphere by any given compact manifold [12]. 


An Important Theorem and Construction of Manifolds Required in the Main Theorem (Mi(k)s). 

A)
Theorem: Consider  the  following  information. For any k = 1,2,3,… we have closed hyperbolic manifolds M0(k), M1(k), M2(k) and M3(k), which satisfy the following conditions. 

dim M0 (k)  = 6

dim M1 (k)  = 5

dim M2 (k) = 3

dim M3 (k)  =3

M2 (k) ⊂ M1 (k) ⊂  M0 (k)

And M3 (k) ⊂ M0 (k)

All the inclusions are totally geodesic.

M2(k) and M3(k) intersect at one point. 


For any k, there is a finite covering map p(k): M0(k)(M0(1), where for i = 0,1,2,3 we have: p(k): Mi(k) = Mi(1). 


M1(k) has a tubular neighborhood in M0(k) of width r(k) and r(k)(( when k((.


Then for the given (>0, there is a K where all the M0(k) for k(K have exotic (smoothable) triangulations that admit the Riemannian metric along with sectional curvatures in the interval (-1-(, -1 +(). 

B)
Now  for  any  n(4, we construct Mi(k) manifolds (I = 0,1,2,3) where dim M0(k) = n, 

dim M1 (k) = n -1

dim M2 (k) = n – 3

dim M3 (k)= 3 (k = 1,2,3,…)

and satisfies the conditions (b), (c), (d) and (e) of the theorem. Also when n = 6 they will satisfy (a). 


Keep the positive prime number m fixed and let 
[image: image22.wmf]EQ(m)

=

. Denote the set of integers of E by (E. Assuming l((E to be fixed, for k = 1,2,… the quadratic from Q(k) on Rn+1 can be defined by


 Q(k)(ϰ 1, …,  ϰn+1 ) = l2 (k-1) ϰ12+ϰ22 + ϰ32 + … + ϰn2 - 2n+1



Now we can define the following groups:

G0 = { g ϵ GL(n+1, R) :Gh = H}  ,   where   H= { x ϵ  R n+1 : x n+1 ˃ 0}

G1 = { g ϵ G0 : g e1 =e1} ,

G2 = { g ϵ G0 : g ei =ei} ,  i= 1,2,3}

G3 = { g ϵ G0 : g ei =ei} , i= 4,5 , … , n }

And

H0 (k) = { g ϵ G0 : Q(k) (gx) = Q(k) (x) ∀ x ϵ Rn+1 }

Hi (k) = H0 (k) ∩ Gi  , i =1,2,3

Гi (k) = Hi (k) ϑE , i = 0,1,2,3

Where subindex (E means that the entries of the matrices are in (E and ei is a vector whose jth coordinate is 
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. Note that for all k and i = 1,2 we have: Hi(k) = Hi(1) and (i(k) = (i(1) and simply write H1, H2, (1 and (2 respectively. We also define:

X0 = {x = (x1 ,… , xn+1) ϵ Rn+1 : Q(1) (x) = - 
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, xn+1 ˃ 0 },

X 1= X0  ∩ { (x1 ,… , xn+1) ϵ Rn+1 : x1 =0},

X2 = {(x1 ,…, xn+1) ϵ X0 : x1 =x2=x3=0} ,

X3 ={(x1,…,xn+1) ϵ X0 : x4=x5 = ... =xn=0}


We consider X0 with the metric at the point x(X0, which is the restriction of Q(1) to the hyperplane tangent to X0 in x. This Riemannian metric is of constant curvature 
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. Recall that X2(X1(X0 and X3(X0 and all the inclusions are totally geodesic and we also have: X2(X3=en+1. Consider the diagonal matrices n+1 by n+1, 

 D (k) = diag { l k-1 ,1,1, … ,1 }
and note that for i = 0,1,2,3 we have:

 D (k) Hi (k) D(k)-1 = Hi (1)
Since Hi(k) acts on Xi and for i = 0,1,2,3 we have 

 D (k)Гi (k) D(k) -1 ⊂  Hi (1) 
we define:

 Yi (k) = Xi / D(k) Гi (k) D(k) -1  
where i = 0,1,2,3.


Note that for any k and i = 1,2 we have: Yi(k) = Yi(1); thus we just write Y1 and Y2. 


B.1. Now for any ideal ( of (E, consider the following congruence subgroups.

Гi (k) ∫ = {g ϵ  Гi (k) :g = Idmod ∫ } , i = 0,1,2,3

Also write 

Yi (k) ∫ = Xi / D(k) Гi (k)∫ D(k)-1   ,   i = 0,1,2,3
B.2. We have the following propositions:


For any nontrivial ideal ( of (E, (i(k)( is a subgroup of finite index of (i(k), since (E/( is finite. 

(i(k) is discrete [8]. 

Yi(k) is compact [8, 9].


For all the ( except for the finite ideals (, GL(n+1, (E)( is torsion-free [10]; thus all the (i(k)( are torsion-free. Therefore all the Yi(k)( are compact manifolds. Besides, for all of these except finite ideals ( we have: 


If  π (k) : X0  →  X0 /  D(k) Г0 (k)∫ D(k)-1 =Y0(k) ∫    

is the projection, then:


(*)   π (k) Xi = Xi / D(k) Гi (k)∫ D(k)-1= Yk(k) ∫ 


Thus Yi(k)( are totally geodesic submanifolds of Y0(k)( [7]. 

Remark: In order to use (2.2) from [7] we need some other propositions. Let (i be the following involutions for i = 0,1,2,3:

σi (x1, x2,…,xn+1) = (-x1, x2,…, xn+1)
σ2 (x1, x2,x3,x4,…,xn+1) = (-x1,-x2,-x3,x4 ,…, xn+1)
σ3 (x1, x2,x3,x4,x5…,xn ,xn+1) = (x1, x2,x3,-x4,-x5…,-xn ,xn+1)

Note that the Xi is the set of fixed points of (i. Also for i = 0,1,2,3 we have: 

 σi Г0 (k)∫ σi = Г0 (k)∫ 
and besides the following two propositions hold: (i(k)( acts freely, for it is discrete and torsion-free.

For i = 0,1,2,3 we have

Гi (k)∫= {g ϵ Г0 (k)∫ :g Xi =Xi.} = {g ϵ Г0 (k)∫ : σi  g σi= g}

Seeing the first equality note that a group of orthogonal matrices with coefficients in (E is finite. Thus we can used (2.2) of [7] to obtain (*). 


B.3. Lemma. The widths r(k) of tubular neighborhoods of (Y1)( in Y0(k)( can be chosen so that r(k)((.

Proof: We have to take three steps:

Step 1: We prove that


 (X0) ϑE = X0 ∩ ϑE n+1={ (x1 ,…,xn+1) : x12+ …+ xn2 n+12 =-
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, xi  ϵ ϑE }




Is  closed  and  discrete. Proving this problem is like proving the fact that (0(k) is discrete [12]. Therefore in order to prove step 1, first note that (E is not discrete in R, but the map (: (E(R(R which is defined by 
 x → (x, ) 
 where 
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 is the conjugate (that is 
 α +b = α -
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b  
), is a bijection of (E to R2 whose image is closed and discrete.

Thus, 

 Φ: (X0) ϑE  → Rn+1 × Rn+1 
is a bijection and also has a discrete and closed image. Since 


 x12+…+x2n - 2n+1 = -
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implies


 12+…+
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2n -
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 EMBED Equation.3  [image: image52.wmf]x

2n+1 = 
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then  proj2 (Φ ( (X0) ϑE ) )  is compact, therefore 

(X0) ϑE  = proj 1 (Φ ( (X0) ϑE)) 
is closed and discrete.

Step 2: We prove that there is a K for any s(R+, where ||(en+1||>s for k>K and 

 γ ϵ D(k) Г0 (k)∫ D(k)-1 \ Г1 
where the bars in the inequality ||(en+1||>s denote Euclidian norm in Rn+1. 

Therefore take ( as before. Then for (((0(k) we have: ( = D(k) (D(k)-1. Since ( is not in (1 and since (*) gives:

  Г1 = {g ϵ Г0 (k): gX1 =X1} ={g ϵ Г0 (k): gX1∩ X1≠ Ø}



and considering that 


(lk-1 α1 )2 + …+ α2n -α2n+1 = -
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yields:

 γen+1= (lk-1a1,a2,…,an+1) ϵ (X0) ϑE)


we have: 

 γen+1 = D(k) βD(k)-1 en+1=D(k) β en+1 = (lk-1a1,a2,…,an+1)
where ai((E and a1(0. Now according to Step 1, 
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 is closed and discrete. As a result 
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 is finite (B(0,s) is the ball in Rn+1 with its center at the origin and the radius s). Therefore the set  proj 1((X0) ϑE ∩ B(0,s)   is finite, where  proj1 (x1,…,xn+1) =x . By choosing K large enough for k>K, lk-1 will not be decomposed into the nonzero elements  proj 1((X0) ϑE ∩ B(0,s), thus 

 γen+1= (lk-1a1,a2,…,an+1) 
does not belong to B(0,s), implying that for k>K we have: ||(en+1||>s.

Step 3: Because from Step 2 we have 

 d(en+1,{ γ en+1: γ ϵ D(k) Г0 (k)∫ D(k)-1 \ Г1})→∞  
when k(( (d is the Euclidean distance), then we can easily see that the same thing that happens with Riemannian  metric  of  X0 (with the metrics inducing the same topology), then the lengths of the closed geodesics (not in Y1) at point O = ((k)(en+1) will go to infinity when k((. Thus, we prove the lemma using the triangular inequality. 


We found the manifolds which satisfy condition (e) of the theorem; now we return to finite coverings by finding manifolds satisfying (b), (c) and (d). We need the following result [7]. 


B.4. There  are  infinite  ideals  (  of  (E that satisfy the following two conditions: Xi/(i(1)( is orientable for i = 0,1,2,3.


If (((0(1)( and for x(X3 we have (x(X2, then  γ =g2g3   where gi (  Гi(1) ∫  for i = 2,3. 


Thus we can assume that the ideal (that we choose in lemma B.2 satisfies B.4. 

Remark: Expression 2 of B.4 holds if and only if  Y2(1) ∫ ∩ Y3(1) ∫  is one point. For i = 0,1,2,3, consider the Ti(k)(lk) ∩ ∫  where (lk)  is the main ideal generated with lk. Because ( lk) ∩ ∫( ∫ , then we have: 

Гi(k)( lk) ∩ ∫  ( Гi(k) ∫   . For i = 0,1,2,3,

let

∑i(k)=D(k) Гi(k)( lk) ∩ ∫  D(k)-1

and note that ∑i(k)  is a subgroup of Гi(k) ∫ for i = 0,1,2,3. Besides, from  Гi(k)(l2k) ∩ ∫ (  ∑i(k) ( ∑i(1) ( Гi(1) ∫  we conclude that  ∑i(k)  has a finite index in Гi(1) ∫  and ∑i(1). Now consider Mi(k)   as follows: 

Mi(k)=Xi / ∑i(k)  for i = 0,1,2,3.


The Mi  satisfy conditions (b), (c), (d), and (e) of the theorem. 

PROOF OF THE PRINCIPAL THEOREM


Considering the foresaid issues, we are ready to prove the important theorem that follows:

A)
Theorem. There are closed real hyperbolic manifolds M in any dimension n, n>5, which satisfy   the   following  condition.  For  (<0,  M has  a  finite  covering  space  
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  which  ensures the existence of an exotic (smoothable) PL structure  and  this  structure admits a Riemannian metric  with  sectional  curvatures  in  the  interval (-1-(, -1 +().


Now to denote this theorem, we first prove a form of theorem (A) of section 4:

B)
Theorem.  Consider  the  following  data.  For  any k = 1,2,3,…, we have the closed orientable hyperbolic manifolds M0(k), M1(k), M2(k), M3(k) and M4(k), where 

dimM0(k)=n

dimM1(k)=n-1
dimM2(k)=n-3
dimM3(k)=3
and dimM4(k)=n-2
M2(k) ( M4(k) (  M1(k) ( M0(k
and M4(k)(M0(k). All the inclusions are totally geodesic. 

M2(k) and M3(k) intersect exactly at one point.


For any k there is a finite covering map P(k): M0(k)(M0(1), where for i = 0,1,2,3,4 we have P(k) (Mi(k)) = Mi(1).


M1(k) Has a tubular neighborhood at M0(k) of the width r(k) and r(k)(( when k((.


Then,  assuming  the  above  conditions  for  (>0, there is a K where for k(K, M0(k) will have exotic (smoothable)  triangulations  with  the  Riemannian metric admitted for any sectional curvature in the interval (-1-(, -1 +(). 


The difference between this theorem and the theorem (A) of the previous section, regardless of the omitted dimension 6, is that now we need an additional manifold, that is M4(k) of dimension 2, which fits between M1(k) and M2(k):

 M2(k) ( M4(k) ( M1(k)




Moreover, we want all the manifolds to be orientable [13]. 


Proof of Theorem (B). The proof of this theorem is similar to that of the Theorem (A) of section 4. Except for the smoothability of exotic triangulation, we explain this section. 


Recall that there is a one-to-one correspondence between the concordance set of classes of PL structures, on a PL manifold like M (dim M>5) and [M, TOP/PL], that  is  the  homotopy  set   of  classes  of  mappings of M   to   TOP/PL  and  since  TOP/PL  is  a  K(Z2, 3), [M, TOP/PL]  is  in  one-to-one  correspondence  with H3(M, Z2).   The    latter   correspondence   is   given  as

follows. Let ((H3(TOP/PL, Z2)(Z2 denote the generator (i.e. the nonzero element). Then, the correspondence is given as: if (([M, TOP/PL], then  f→ f*ψ ( H3(M,Z2)   [2].


Note that the triangulation of (W(k)((0,3))((k) is 

 τ(k) =(p(k)|w(k) × Id(0,3))
and ((k) (the PL structure on M0(k)) corresponds to the cohomology class in H3(M, Z2) (dual with the homology class in Hn-3(M, Z2)). This correspondence sends the PL structure induced by the hyperbolic structure to 0(H3(M, Z2). Also denote the map that corresponds to ((k) by (: M0(k)(TOP/PL. In order for ((k) to be smoothable, we need the dimension 6 (in dimension 6 all PL structures are smoothable). Now we apply a new hypothesis. In fact, since M0(k) is smoothable and the PL structure induced by the hyperbolic structure corresponds to the constant map in [M0(k), TOP/PL], the following lemma yields that ((k) is smoothable. 

C)
Lemma. We can assume that (: M0(k)(TOP/PL acts through TOP/O [14, 15].


Now, to prove Theorem (A) we have to show that there are manifolds satisfying Theorem (B). To do that, we proceed by proving Theorem (B) from section 4. Yet we need another definition (See part (B) of section 4):  G4 ={g ( G0: gei = ei , I = 1,2 }  and we have G2(G4(G1(G1(G0. The remaining structure of the proof is completed similar to what we said in section 4. 

DISCUSSION AND CONCLUSION


Examining the isomorphism of two homotopically equivalent manifolds of dimension 6 with regards to examples of [1], we found that conditions such as differentiability  and  existence  of  PL  structure  for these manifolds were not necessary. Diffeomorphism, PL-homeomorphism or homeomorphism of these manifolds is another issue which could be further examined and in fact if the curvatures of the manifolds are non-positive (negative) and they have dimensions greater than 4, they are not diffeomorphic. 


For example, if we consider the real hyperbolic manifold  M  to  be  compact  and  of  dimension  m(5 with the curvature of -1 and consider the (i to be nonequivalent exotic balls of dimension m with the condition  of  being  diffeomorphic, we can see in [1] that for any given real number (>0, there is a finite laminated   covering   space   
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  of  M,  where  none of   the  two  manifolds  
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  and   M̃ # ∑k ,…, M̃ # ∑1     are  diffeomorphic, but they all homeomorphic with one another (‘#’ denotes a connected set). 


And besides, each of the  M̃ # ∑k ,…, M̃ # ∑1   manifolds  ensures  a  Riemannian  metric  and  all  of the values of their sectional curvature lie within the interval (-1-(, -1 +(). 


If manifolds are closed hyperbolic and of dimension greater than 2, their being is isomorphic will be expressed with Mostow’s Theorem. And if we consider dimensions greater than 5, these manifolds are not PL-homeomorphic. 


It means that in dimensions n(6, there are closed non-positive manifolds of dimension n that ensure exotic (smoothable) PL-structures which admit the Riemannian metric with non-positive sectional curvatures and this issue is the principal and conclusive result of the discussion [14, 15]. 


The question that can be put forward here is whether or not by reducing the conditions of the theorem we can state a stronger theorem. 
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