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Dynamics of a Particle, Constraint Surface
and Generalized Uncertainty Principle
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Abstract: Gauge invariant action play an important role in the dynamics of particles. In this road, the equation
of motion of a particle on a constraint surface obeys from a gauge invariant action. In this article, using a gauge
invariant action,  a  solution  of  Jacobi identity is presented on the surface of a manifold. In continue, in the
8-dimensional manifold with a non-trivial topology, a generalized uncertainty relationship a generalized version
of space-time uncertainty principle is obtained.
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INTRODUCTION

Recently there has been a great deal of interest to
study the microscopic origin of space-time [1-15]. It was Where  and ( ) =  + . In this
shown that at the Planck scale regime, the classical
perspective of space-time receives a modification and at
a high-energy probes, the usual Heisenberg uncertainty
receives an unusual correction by adding a new term

. Where  is Planck distance. This relation

is invariant under,

(1)

that has a kind of inversion symmetries [15]. However the
generalized space-time uncertainty is studied in the string
theory [1-3] black hole physics [4] quantum mechanic [5]
(anti) de Sitter space time [6, 7] quantum cosmology [8]
etc… and is applied to probing the physical phenomena
[9, 12] but study of this unusual behavior micro space
time in the gauge fields perspective may be an alternative.
In this letter, we have obtained a generalized space-time
uncertainty using a gauge invariant action on a constraint
surface.

Manifolds and Constraint Surface: Consider a symplectic
super  manifold  which has coordinates x , x ,…,x  with1 2 2N

 = (x ), the non-degenerate simplistic two form (x) isi i
ij

d  = 0. Using the Jacobi identity, we can write [16],

(2)

ij
i j

frame Poisson bracket is,

(3)

Where ( ) = ( ) and . Eq. (3)ij
ij

satisfies the Jacobi identity, since. Eq. (2) implies,

(4)

Where x is the canonical coordinate and  is a constant.i ij

Consider a Hamiltonian H(x) with 2M < 2N, irreducible
the second class constraint (x) which satisfy regularity
condition as [16],

(5)

and
(6)

Consider  a   generic   constraint  surface   as a
sub-manifold of M (manifold) if a continuous function

exist, then  is set to be a retraction and a

retract of M. Furthermore, if there exist a continuos map H
: M × I  M, with the interval [0,1], we can write,



x

( )ix x

( ){ ( ), ( } { , } |i j i j
D x x xx x x x x x →=

( ){ ( ( )), ( ( ))} { ( ), ( )} |M D x x xA x x B x x A x B x →=

( ( ))x x

( ( ))x x

( ){{ ( ), ( )} , ( )} ( 1)

( ){{ ( ), ( )}, ( )} ( 1)
{{ ( ), ( )} , ( )}} 0

A B C

C A B

A x B x C xM M

B x C x A x M
C x A x B xM M

++ −

++ −

=

{{ ( ), ( )} , ( )} {{ ( ), ( )} , ( )} |A x B x C x A x B x C xM M D D x x= →

( ) ( ( )),jx x H x x whereMij i Mij= ∂




{ , ( ,( ))}j jx x H x x= 

( , )iP L x xix

∂
=
∂



ˆ ˆ ˆ[ , ] ( )i j ij
Mx x i x= 

ˆ ˆ[ , ] ( ( ))v
Mx p i x x= 

ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( 1)
ipx p x p p x= − −

( )ix x

(1 ( ))
2

i j ij
Mx p w x x∆ ∆ = +



'

'

( ) 'x x ≈

(1 ')
2

i j ij
Mx p w∆ ∆ = +



Middle-East J. Sci. Res., 10 (6): 740-742, 2011

741

H(x,0)=x H(x,1) for any x M (7a)
H(x,s)=x for any x F for any S I (7b)

Eq. (7) implies that the identity function on M is
hemotopic to the function .

Therefore, M and  have the same homotopy type
and our sub-manifold M must have the same fundamental
group as,

(M) = ( ) (8)1 1

Therefore, a generic constraint surface   as  the
sub-manifold has the same homotopy type with the
manifold M and we can consider the constraint surface as
a manifold. Batalin and Marnelius [16] advance the
quantization of Hamiltonian systems with second-class
constraints. In this scenario, the equation of motion of a
particle obeys from a gauge invariant action.

A Gauge Invariant Action: In the paper by Lyakhovich
and Marnelius (2001) a condition placed on  as,

(9)

This condition is to restrict the choice of gauge
theory and is remove in this spirit; one can instead search
for a bracket on M with property,

(10)

When {,} and {,}  are the Poisson and the Dirac brackets,D

respectively and {,}  is a new bracket on M. A  andM

B  are arbitrary gauge invariant observable. On the
manifold, the Jacobi identity is satisfied by the new
bracket {,}  as,M

(11)

Where .

The Batalin–Marnelius gauge invariant action [16, 17],
show’s the equation of motion of a particle on the
manifold M, as  is a

degenerate function, so x  is not unique and we have,j

(12)

Canonical momentum may be written as .

As it well known, two non-commutating relations for any
given state, in a Hilbert space are as,

(13)

(14)

From eq. (14) one obtains,

(15)

Note that  = . An appropriate choice ofij ij
M

allow to non-degenerate canonical coordinates x , x .1 2

Consider two particles localized at x , x , respectively.1 2

Relation between x , x  is obtained by eq.(13). The total1 2

uncertainty on a manifold could be obtained by solution
of the Jacobi identity as,

[x ,[x , p ]] + cyclic(i, j, k) (16)i j k

In the 8-dimensional manifold with higher non-trivial
topology eq. (16) can be solved as,

(17)

The space-time manifold has a foam structure in the
large-scale compared to the Planck scale. If we identify

 as the Planck length, the minimal length on a manifold

is  and we can write,

. From eq. (17) we obtain,

(18)

CONCLUSION

The foamy space-time has the manifold structure in
the Planck scale regime. Using a gauge invariant action,
the modified space-time uncertainty in a foam structure of
the space-time is constructed. Using the fact that the
equation of motion of a particle on a constraint surface
obeys from a gauge invariant action, a generalized version
of space-time uncertainty principle is obtained. It is
shown that, usual uncertainty principle receives a
correction.
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