Middle-East JTournal of Scientific Research 10 (5): 554-558, 2011
ISSN 1990-9233
© IDOSI Publications, 2011

Homotopy Perturbation Method for Nonlinear Thermoelasticity
‘Syed Tauseef Mohyud-Din, **Ahmet Yildrim and “Yagnmur Gilkanat
"Department of Mathematics, HITEC University Taxila Cantt, Pakistan

“Ege University, Department of Mathematics, 35100 Bornova — Izmir, Turkey
*University of South Florida, Department of Mathematics and Statistics, Tampa, FL, 33620-5700, USA

Abstract: In this paper, homotopy perturbation method (HPM) is applied to solve the Cauchy problem arising
mn one dimensional nonlinear thermoelasticity. Tt 1s observed that the proposed technique 1s fully compatible
with such nonlinear problems. Numerical results explicitly reveal the complete reliabilltiy of the propoded
algorithm (HPM).
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INTRODUCTION

The hom otopy perturbation method (HPM) was first
proposed by the Chinese mathematician Ji-Huan He [1-3].
Unlike classical techniques, the homotopy perturbation
method leads to an analytical approximate and exact
solutions of the nonlinear equations easily and elegantly
without transforming the equation or linearizing the
problem and with high accuracy, mimmal calculation and
avoldance of physically umrealistic assumptions. As a
numerical tool, the method provide us with numerical
solution without discretization of the given equation and
therefore, it 1s not effected by computation round-off
errors and one is not faced with necessity of large
computer memory and time. This technique has been
employed to solve a large variety of linear and nonlinear
problems [4-18]. The interested reader can see the Refs.
[19-22] for latest development of HPM.

The object of this study is to employ HPM to solve
a real-life problem that exhibits coupling between the
mechanical and thermal fields. Let consider the following
nonlinear system arising in thermo elasticity [23-25].

y - @ (11,0) iy + b (11, 0)8, = £ (x,0) (1)

(1, 0) 6, + b (1.0, -d (6) 0,.= g (x, 2)
subject to the initial conditions of

w(@x0) = o (), u, (x.0) =o' (x), 0.0)= 6 (x)  (3)

where u(x,1) 1s the body displacement form equilibrium
and O(x,7) 1s the difference of the body’s temperature from
a reference T, = 0, subscripts denote partial derivatives
and a, b, ¢ and d are given smooth functions. For more
details about the physical meaning of the model, see
[23, 26]. Recently Ganji ef al [27] used Adomian’s
decomposition method for solving the governing problem.

lustrate  the

effectiveness of the method, an artificial model 1s used.
Let us define a, b, ¢, 4", &' and 6° by [25]:

Solution Procedure: In order to

alu, N =2-ubu O=2+u0=1,du.OH=0 (D

1

1+x

W (x)=

= ,ul(x)ZO,BO(x):
1+x
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and replace the right-hand side of above equations by :

_2(1+12)(3x2—1)

B 2x(l+z‘)

f(x,t):1+x (1+x2)3 a(w,v) (1+x2)zb(w,v)
(6)
g(x,t)zl 2c(w,v)— Aad zb(w,v)—Wd(v)
X (1+x2) (1+x2)
(7
w=wlxt __zx(l”z),v:v(x,z)_ b
(1) Tt gy
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where a, b, ¢ and d are defined by Eq. (4) and the exact 0+ 2u, +un B-00_tgxH)}=0 (13)
solution of two equations are given by [25] :
We construct the following homotopies

1+1¢
7 (9 ty+p{ —2u, +uu B+20 +u 60— f(x1) }=0049

2
u(wnt) = 0(xr)-

(1) lex
If we put (4) into (1) and (2), then we get :

9f+p{ 2uy, +uu 9799xx7g(x,t) }:0 (15)

w- (2 H2+u ) 0, -fxH=0 (10) o
Assume the solution of Egs. (14,15) to be in the form:
0+ (2+u,0) u 00 -gxn=0 (11)
u:u0+pu1+p2u2+ p3u3+... (16)
and we get
wy+p {-2u, Fun 020000 Axnt=0 (12) 0=0,+ pO, + p292+ p393 L amn

Substituting (16-17) mto (14,15) and equating the coefficients of like powers p, we get the following set of differential
equations

po (g )ﬁ =0

(8),=0
Prilm) —2(m)_ + (1) () 61+ (sg) (s}, B+ () (sg) 8 +2(8), + () (8) 8+ () (8p) 6 +(1) (8) 6 —f(x1)=0
(62), +2(1a) , +(ug) (tig) 6 +{uag) (1), 6 +(ta) (10) 6 —6p(6) —6(8) —glxt)=0

(63), +2(ua),, +{ug) (o), 02 +(ug) (10),, 00 +(1g) (2], 00+ () () 0+ () (1), 6
+(u2)x (ug )xt By — B (& )M - QZ(QD)M - 91(91)H -g(x1)=0

and so on, the rest of the polynomials can be constructed in a siunilar manner. With the imtial conditions Eq. (3) gives

_ (18)
MO(x,r)_ 1+ x2
1017(x—3x3)+14!6(x+x2—3x3+x4)
+4273 (x+x2—3x3+x4)
1 (x,.x‘):é26 +35!4(1+x+ 22— 67 —2x% -84 —3x8)
10s(1+ +?) #7077 (207 - 747 1 260 60 4T ) 19)
+10512(1+5x2+10x4+10x6+5x8+x10)

pl:(ul)ﬁ72(110)“+(u0)x(u0)xx90+2(30)x+(u0)x(30)x907f(x,.t):0(91)?5+2(u0)ﬂ+(u0)x(u0)ﬂ90790 (Go)xxfg(x,t):o

1 (20)
2

QO(X’I): 1+x

248557 4 307 + 1083 (1 + a2 - 3x4)
6 (x.1) = ———— +307 (1-20-6x° 30t - 64° - 2¢7) (21)

15(1+ «*
+w{u4f+6ﬁ+4ﬁ+£)

Proceeding in the same way, we can obtain u, (x,£), £, (x,7) and higher order approximations. Here, the numerical results
are evaluated using terms approximation of the recursive relations.
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Fig. 1: u(x,t) when t=0.25 Line:HPM, Point:exact
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Fig. 2: u(x,t) when t=0.25 Line:HPM, Point:exact
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Fig. 5: O(x,f) when t=0.25 Line:HPM, Point:exact
2.

1.5

0.51

02 4 6 8 W 12 M
X
Fig. 6: O(x,r) when t=0.5 Line:HPM, Point:exact

4 5 1 7 8 9 10
Fig. 7: Absolute error when t=0.25

0.047
0.035
003
0.025
0.02
0015

o

4 5 3 i [ 9 10

Fig. 8: Absolute error when t=0.5

556



Middle-East J. Sci. Res., 10 (3): 534-358, 2011

CONCLUSIONS

In this study, we have successfully applied HPM to
obtam an approximation of the analytic solution of the
Cauchy problem arising m one dimensional nonlinear
thermoelasticity. In this method, the solution 1s found in
the form of a convergent series with easily computed
components. The results obtained by homotopy
perturbation method are compared with those of the exact
solution, which shows very good agreement, even using
only few terms of the recursive relations. In general, this
method provides highly accurate numerical solutions and
can be applied to wide class of nonlinear problems.
Homotopy perturbation method does not require small
parameters which are needed by perturbation method.
Also the method avoids lmearization and physically
unrealistic assumptions.
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