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Abstract: This paper intends to introduce a new method of discretized Iterative learning control of two-
dimensional systems. Recently, 2-D systems play very important role in industry. As a result, it is of great
importance to pay more attention to this kind of dynamics. Generally, in the 1-D systems the various quantities
are function of time. On the other hand in many phenomena in the nature, some quantities are function of two
independent variables which mainly none of these two variables is time. Consequently, for controlling of 2-D
systems many attempts have been made and some kind of former 1-D methods have been extended to 2-D
systems. In this article, by using GR model of 2-D systems a Novel ILC method for 2-D systems is presented.
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INTRODUCTION function are used [1,2]. Also for issues such as state and

In the theory of 1-D systems, generally various equation are used [3-10]. For optimal control of 2-D
quantities are functions of time. On the other hand many systems, mostly state space equation form has been used
processes in the nature have quantities which are [11-15]. Some new results on the stability of 2-D systems
function of two independent variables and generally none have been presented - specifically with regard to the
of them is time. As an example, the intensity of an image Lyapunov stability condition which has been developed
is function of horizontal and vertical axes of image. In this for GR (Lu, 1994). Motivated by the applications in digital
case, for modeling of this kind of systems 2-D signals are picture processing, seismic data processing, X-ray image
used. In these systems the processing operation is done processing, etc. the continuous-time 2-D system is often
in two independent axes. Two Dimensional (2-D) systems converted into an equivalent discrete-time 2-D system via
are mostly investigated in the literature as a multi- some approximation methods, such as the first difference
dimensional system. 2-D systems are often applied to method [16] and the high-order discretization method [17]
theoretical aspects like filter design, image processing and with the assumptions that the sampling time and the
recently, Iterative Learning Control methods (see for sampling distance are sufficiently small. Then, by using
example Roesser, 1975; Hinamoto, 1993; Whalley, 1990; the approximate discrete-time 2-D model together with a
Al-Towaim, 2004; Hladowski et al. 2008). The main discrete-time performance index suited to discrete-time 2-
applications of 2-D systems are such as distributed D systems, many digital linear quadratic regulators (LQRs)
systems, heat transfer, image processing, biologic are developed for optimal digital control of discrete-time
systems, earthquake signals processing, sonar etc. To 2-D system [16,18-22]. 
describe 2-D systems in addition to state space equation, Iterative learning control (ILC) is a technique to
transfer functions and difference equations are also used control the systems doing a defined task repetitively and
[1]. Similar to 1-D systems, if the system is time variant, periodically in a limited and constant time interval. Since
state space equation or difference equation is used. For the iterative learning control concept was proposed [23]
various applications, one of the description methods is (widely credited to Arimoto), a very large number of
used. For example in the case of stability analysis of 2-D approaches have been considered. Rogers et al. [24]
systems, generally state space equation and transfer firstly  noted  the  2-D  dynamic  characteristics of the ILC

parameter estimation, state space equation and difference
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system and explored the convergence of the system
based on the stability criterion for the 2-D system. Geng (2)
et al. [25] first proposed ILC system as a 2-D system for
design and analysis. Their resulted ILC scheme, however, Where u and y are the input and output of system
is a conventional ILC. Based on a 2-D Roesser model, respectively.  Also  this  system   is   assumed  linear.
Kurek et al. [26] and Fang  et  al.  [27]  developed With  taking the z-transform of above equation the
feedback feed-forward ILC schemes for deterministic transfer function is obtained. In the case that the
repetitive processes. Shi et al. [28, 29] extended robust mentioned 2-D system is stochastic this form is known as
control concept to 2-D Roesser system resulting in an ARMA model. 
integrated design of robust feedback control and
feedforward ILC for uncertain batch processes. Using ILC State  Space  Equation:  One  of  the  most  significant
for 2-D systems was introduced in [30] for the first time points  of  the  subject  of  2-D  systems  is  the
based on FM model [31]. In this paper, the ILC method is multiplicity  of  presented  models for state space
used for discretized 2-D systems based on GR model. The equation. This fact is due to this point that in this
organization of this paper is as follows: Section 2 presents equations  local  state  vector  is  used  instead  of  state
2-D system various descriptions. In section 3, the vector because   2-D   systems   have   state   vectors
discretized 2-D systems are introduced. The problem of with infinite dimension. These models include GR
producing a proper ILC method for discretized 2-D (Givone-Roesser) model [18], FM (Fornasini-Marchesini)
systems in GR model and the stability of the method is model [31] etc. In the following the GR description is
explained in section 4. In section 5, simulation results are presented.
given. Finally conclusion is presented.

2-D Systems Descriptions: As it was mentioned and Roesser [18]. This model was used in consideration
previously, for describing the 2-D systems there are some of recursive 2-D systems. After that GR model is used in
methods. In this section these descriptions are introduced other problems such as stability, image processing,
briefly. control and prediction. 

Transfer  Function:  For  finding  the  transfer  function This model has the following formulation
of  discrete  2-D   systems,   similar   to   1-D systems the
z-transform is used. In this case, it is called 2-D z-
transform [1]. The general form of transfer function is as (3)
follows

(1)

Which z and w are the shift operator of horizontal and Where and are local horizontal state
vertical axes respectively. Also N(z,w) and D(z,w) are
polynomials based on z and w. For instance, consider the
following transfer function

The roots of numerator and denominator of transfer
function are considered as zeros and poles of 2-D system
respectively.

2-Difference Equation: Difference equation for a 2-D
system is as follows

GR Model: This model was introduced in 1972 by Givone

vector and local vertical state vector respectively. Also u
and y are respectively the input and output vectors of
system. I and j are the indices in horizontal and vertical
direction. Matrices A,B and C generally are functions of
i and j. As can be seen the local state vector in every
point is dependent to the previous state vectors located
in a cell before the recent point. This matter is known as
First Quadrant Causality. More information about this
issue is found in [1].

The Discretized 2-d System Description: Consider the
continuous-time two dimensional system in GR model [18]
described by:
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(4)

(6-2)

With boundary values and  that 

(5)

Furthermore, A , A , A , A , B  and B  are all real11 12 21 22 1 2

matrices with an appropriate dimensions, v and h are
vertical and horizontal components. Furthermore for
optimal control of this continuous-time 2D system, it is
discretized as following:

Suppose that u (x,t) is a function with the followingc

definition:

(6)

X and T are explaining the sampling period of x and t axles,
now by this definition the (4) discrete-time system will
present so:

(7)
(8)

That

(9)
and

(10)

For instance, in a continuous GR model (4) suppose
that A =-3, A =3.2, A =1, A =-1, B =0.3, B =0 and also11 12 21 22 1 2

by considering X=0.1 and T=0.1, the discretized 2-D
dynamic is as following:

ILC Method for Discretized 2-D System: For controlling
an iterative discretized 2-D system, the following 2-D ILC
algorithm can be used.

For this reason it is possible to define u (iX,jT) ford

k+1th iteration as following:

(11)
In which

(12)
That y  explains the desired system output.des

Now, for all iterations the control input of discretized
2-D system can be achieved by using the relation (11).
 Without reducing the generality of the problem and for
the reason of simplicity we assume the dynamic (7) as
follows:

(13)
Furthermore, the boundary condition for (13) is

(14)

Definition 1: If the state vector norms

and , converge to zero when i+j+  then the 2-D

system (13) is asymptotically stable.
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Here, we want to restate the Lyapunov stability for Therefore, the difference equation (i,j) is
the GR that has been presented in many papers [33-35].

Lemma 1[33]:The 2-D system (13) with and

is asymptotically stable if there exist two positive definite
matrices P  and P  such that1 2

(15)

With respect to (15), let's define two functions as follows.

(16)

(17)

The two functions (3) and (4) are called 2-D
Lyapunov functions with different delays. In addition, the
difference of the 2-D Lyapunov functions can be defined
as

(18)

Lemma 2: The zero input 2-D system (1) is asymptotically
stable if

(19)

Proof: Note, the zero input system (13) is

(20)

By replacing the state vector (20) into (17) we can get

(21)

(22)

Where

It is clear that the expression (i,j) = 0 results in the
stability condition (15). In other words, both expressions
(15) and (19) are equivalent. This completes the proof.
 In General, in order to consider the stability of dynamic
(13), the following relations are mentioned. By using z-
transform for dynamic (13) we have

(23)
 As a result, the output y is as follows

(24)

So for an iterative 2-D system the relation (24) can be
rewritten as follows

(25)
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In which, the subscript “k” in previous relation Definition 2: [32] The learning gain matrix  consists of a
denotes a trial of the system which should be controlled.
So, by using the relation (25) the dynamic (13) can be
expressed in the form

Y  = RU (26)k k

Where R is a lower-triangular Toeplitz matrix whose
elements are the Markov parameters of the system to be
controlled. We call R the system impulse response matrix.
For linear, timevarying systems and some classes of affine
nonlinear systems, a similar representation can be
developed, with the key feature being that the matrix R is
lower-triangular. Using this formulation, the problem then
becomes to design a learning gain matrix  so the
resulting “closed-loop system” in the iteration domain,
given by  where  is the

error, for some desired trajectory Y , is eitherk

asymptotically and/or monotonically convergent (stable)
along the iteration axis in an appropriate norm topology.
Such stability conditions have been analyzed in Moore
and Chen (2002) and design issues have been considered
in Chen and Moore (2002).

Now, defining the error vector on the iteration trial
(12) as 

(27)

Furthermore, the update equation (11) can be rewritten as

(28)

By using (27) and (28) we have

(29)

Which yields the error evolution law:

(30)

In ILC, there are two stability concepts: asymptotic
stability and monotonic convergence. In asymptotic
stability, two concepts should be differentiated according
to the ILC gain matrix structure.

For the learning gain matrix, the following definition
is used.

combination of Arimoto-like gains, causal gains and non-
causal gains defined as

Arimoto-like gains: The learning gains are placed in
diagonal terms of , i.e. , i = j.ij

Causal gains: The learning gains are placed in the
lower triangular part of , i.e. , i > j.ij

Non-causal gains: The learning gains are placed in
the upper triangular part of , i.e. , i < j.ij

When Arimoto-like gains and purely causal gains are
used, the asymptotic stability condition is defined as

(31)

Where r  is the first non-zero Markov parameter. Wheni

noncausal gains are used, the asymptotic stability
condition is defined as: (I-R )<1, where  is the spectral
radius of (I-R ). However, from (30), using the relationship

(32)

the monotonic convergence condition can also be simply
defined in an appropriate norm topology such as

Definition 3: If , then  is monotonically

convergent to zero in l -norm topology.1

Definition 4: If  , then  is

monotonically convergent to zero in l -norm topology.

SIMULATION RESULTS

Let a 2-D system in GR model with the following
parameters

Suppose the learning parameters are  = 0.5 and  = 0.01.1 2

Also, assume the matrix C is a proper unique matrix.
Furthermore, the boundary conditions are supposed to be
zero. The value of control law in the first iteration also
supposed to be zero. The desired trajectory which 2-D
system should be achieved is assumed to be zero. The
number of iterations is 50.
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Fig. 1: System error e (i,j) systems by using GR model is presented. In this regard,h

Fig. 2: System error e (i,j) model “ PHD thesis, Baton Rouge Louisiana state

Fig. 3: System state e (i,j) 6. Biemond,  J.   and   F.G.   Van   Der    Putten    andh

Fig. 4: System state e (i,j)

With these assumptions the following results are
available.

CONCLUSION

In this article, a new method of ILC for discretized 2-D

the 2-D models given in literature are considered firstly
and the stability of the presented method has been
considerd. Finally, the simulation results have been used
to figure out the validity of the method. 
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