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Abstract: In this paper, the -expansion method is employed to obtain exact traveling wave solutions of the

generalized shallow water wave (GSWW) equation in forms of the hyperbolic functions and the trigonometric
functions. The solutions gained from the proposed method have been verified with those obtained by the
Hirota’s method and the tanh–coth method. It is shown that the -expansion method provides a very

effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
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INTRODUCTION iteration method(VIM) [3-6], (HPM) [7-9], the parameter-

Considered as a fascinating element of nature,
nonlinearity is regarded by many scholars as the most
significant frontier for the fundamental understanding of
nature. Many complex physical phenomena are frequently
described and modeled by nonlinear evolution equations
(NLEEs), accordingly, the exact or analytical solutions of
the discussed nonlinear evolution equations prove to be
of utmost importance, which is considered not only a
valuable tool in checking the accuracy of computational
dynamics, but also a conspicuous help to readily
understand the essentials of complex physical phenomena
such as the collision of two solitary solutions. In the
numerical methods [1, 2], stability and convergence
should be considered, so as to avoid divergent or
inappropriate results. However, in recent years, a variety
of effective analytical and semi-analytical approaches
have been suggested to obtain explicit travelling and
solitary wave solutions of NLEEs, such as the  variational

expansion method  [10],  the  sine-cosine  method  [11],
the tanh  method  [12, 13],  the  homotopy analysis
method (HAM) [14], the homogeneous balance method
[15], the inverse scattering method [16], the Exp-function
method [17-26] and others.

Recently, the -expansion method, first introduced

by Wang et al. [29], has become widely used to search for
various exact solutions of NLEEs [21, 30-33]. The value of
the -expansion method is that one treats nonlinear

problems by essentially linear methods. The method is
based on the explicit linearization of NLEEs for travelling
waves with a certain substitution which leads to a
second-order differential equation with constant
coefficients. Moreover, it transforms a nonlinear equation
to a simple algebraic computation.

Clarkson and Mansfield [28], investigated the
generalized   short    water  wave  (GSWW)  equation
given by
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Where U=U( ) and prime denotes the derivative with
(1) respect to  and  are constants. To keep the solution

Where  and  are non-zero constants. be a total -derivative of another function. Otherwise,
Many authors have  studied  some  types of taking integration with respect to  further reduces the

solutions  of  the  above   Equation.   To  mention, transformed equation.
Wazwaz [27], successfully examined solitary wave Suppose that the solution of Eq. (3) can be expressed
solutions to the GSWW equation by means of the
Hirota’s method, tanh–coth method and Exp-function
method.

Considering all the indispensably significant issues
mentioned above, the objective of this paper is to
investigate the travelling wave solutions of Eq. (1)
systematically, by applying the -expansion method.

Some previously known solutions are recovered as well
and, simultaneously, somemore general ones are also
proposed.

The -expansion Method: Suppose we have a

nonlinear partial differential equation (NLEE) for u(x,t) in
the form

P(u, u , u , u , u , u ,...) = 0 (2)x t xx tt xt

Where u(x,t) unkown function and dependent to x, t
varabiles and P is a polynomial in u(x,t) and its partial
derivatives, in which the highest order derivatives and
non-linear terms are involved. The transformation
u(x,t)=U( ), =x- t reduces Eq. (2) to the

(U, U', U'', …)=0 (3)

process as simple as possible, the function Q should not

by a polynomial in  as follows:

(4)

Where G=G( ) satisfies the second order LODE in the
form

G"+ G'+µG=0 (5)

Where  0,..., , ,  and µ are realm 1 0

constants to be determined later.
So, a direct computation with use from Eqs. (4( and

(5) gives

(6)

(7)
and so on, in other hands with using the general silutions
of Eq. (5) we have

(8)

To determine U explicitly, we take the following four steps:

Step 1: Determine the integer m by substituting Eq. (4) along with Eq. (5) into Eq. (3) and balancing the highest order
nonlinear term(s) and the highest order partial derivative.
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Step 2: By substituting Eqs. (4) and (5) into Eq. (3) with the value of m obtained in Step 1 and collecting all term(s) with
the same order of  together, the left-hand side of Eq. (3) converted into polynomial in . Then setting each

coefficient to zero, we obtained a set of algeratic equations for , µ, ,  and .0 i

Step 3: Solve the system of algebratic equations obtained in step 2 for ,  and  by use of Maple.0 i

Step 4: By substituting the results obtained in the above steps, we can obtain a series  of  fundamental  solutions of
Eq. (3).

The Generalized Shallow Water Wave (GSWW): In this section, we investigate the generalized shallow water wave
(GSWW) with the -expansion method to construct the exact traveling wave solutions.

We consider the generalized shallow water wave (GSWW).

(9)

Making the transformation u=u = v , Eq (9) becomesx

(10)

Using the wave variable =x- t, the system (10), is carrried to a system of ODEs

(11)
and integrating Eq (11), once with respect to  and setting the integration constant as zero yields

(12)

Balancing (v')  with v''' in Eq (12), gives 2m+2=m+3 so that m=1.2

Suppose that the solution of ODE (12) can be expressed by a polynomial in  as follows:

(13)

Where ,  are unknown constants that to be determined later.0 1

On substituting (13) into (12), collecting all terms with the same powers of  and setting each coefficient to zero,

we obtain the following system of algebraic equations for , µ, ,  and , as follows:0 1
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On solving the above algebraic equations by using the Maple, we get

(14)

Where , µ,  are arbitrary constants and  nonzero constants.0

Therefore, by substitute (14) into (13), we can obtain that

(15)

Substituting the general solutions (8) into Eq. (15), we have two types of travelling wave solutions of the generalized
shallow water wave (GSWW).

When –4µ>0, we obtain hyperbolic function solutions,2

(16)

in which =x- t and C ,C , are arbitrary constants.1 2

When  – 4µ<0, we obtain trigonometric function solutions,2

(17)

Where =x- t and C ,C , are arbitrary parameters that can be determined by the related initial and boundary conditions.1 2

 Now, to obtain some special cases of the general solution (16), we set C ,  0, C  = 0 and C  = 0, C  0 respectively, then1 2 1 2

it is obvious that

(18)

(19)

in which >1.
Recall that u(x,t)=v (x,t), we get the formal solitary wave solution of Eq. (1) as follows:x

(20)

(21)

valid for  > 1 follow immediately.
 If we choose C  0, C  = 0 and C  = 0, C  0, in Eq. (17), respectively, then the general solution (17) reduces to1 2 1 2
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(22)

(23)

Recall that u(x,t)=v (x,t), Then we can obtain the general trigonometric function solutions of Eq. (1) as followsx

(24)

(25)

Where  > 1. REFFERENCES
Comparing the particular cases of our general

solutions,   Eqs.   (20,  21,  24,  25),  with  Wazwaz’s
results, Eqs. (57-60) in [27], it can be seen that the results
are the same.

Remark 1: All the travelling wave solutions of Eq. (1)
obtained by the tanh–coth method and the Hirota’s
method in [27] are particular cases of our general
solutions.

Remark 2: We have verified all the obtained solutions by
putting them back into the original equation (1) with the
aid of Maple 13.

CONCLUSIONS

To sum up, the purpose of the  study  is  to  show
that exact travelling wave solutions of the GSWW
equation can be obtained by the -expansion method.

These solutions include hyperbolic function solutions
and trigonometric function solutions. When the
parameters are taken as special values, the solitary wave
solutions are derived from the hyperbolic function
solutions. The final results from the proposed method
have been compared and verified with those obtained by
the Hirota’s method and the tanh–coth method. We also
found more general solutions which are not obtained by
the other existed methods. Overall, the results reveal that
the -expansion method is a powerful mathematical

tool to solve nonlinear partial differential equations
(NPDEs) in the terms of accuracy and efficiency. This is
important, since systems of NPDEs have many
applications in engineering.
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