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Application of Homotopy Perturbation Method to 
Nonlinear Drinfeld-Sokolov-Wilson Equation
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Abstract: Homotopy perturbation method has been applied to solve many functional equations so far. In this
work, we propose this method (HPM), for solving Drinfeld-Sokolov-Wilson equation [14-15]. Numerical
solutions obtained by the homotopy perturbation method are compared with the exact solutions. The results
for some values for the variables are shown in the tables and the solutions are presented as plots as well,
showing the ability of the method. 

Key words: Homotopy perturbation method  Drinfeld-Sokolov-Wilson

INTRODUCTION with initial conditions

Large varieties of physical, chemical and biological
phenomena are governed by nonlinear evolution
equations. Except a limited number of these problems,
most of them do not have precise analytical solutions so
that they have to be solved using other methods.
Homotopy perturbation method has been used by many
mathematicians and engineers to solve various functional
equations. This method continuously deforms a simple
problem, easy to solve, into a difficult problems under
study [1-2]. Almost all perturbation methods  are  based
on the assumption of the existence of a small  parameter
in the equation. But most non-linear problems have no
such a small parameter. This method has been proposed
to eliminate the small parameter. In recent years the
application of homotopy perturbation theory has
appeared in many researches [3-13].

Solution of System of Partial Differential Equations by
Homotopy Perturbation Method: We first consider the
system of partial differential equations written in an
operator form 

(1)

(2)

Where N ,N ,......N  are nonlinear operators and1 2 n

g ,g ,......g  are inhomogeneous terms.1 2 n

To solve system (1) by homotopy perturbation
method, we construct the following homotopies:

(3)

Let’s present the solution of the system (3) as the
following

(4)
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Equating the coefficients of the terms with the identical We have the following scheme 
powers of p, leads to

Having this assumption we get the following iterative

(6)

Where M , i = 1,2,......n, j = 0,1,2,......n-1, are  terms  thatij

obtain with equating the coefficients of the nonlinear (7)
operators N , i = 1,2,......n, j = 0,1,2,......n-1, with theij

identical powers of P

For simplicity we take

(8)

(5) For solving Eq (7) with initial conditions (8)

equations

The approximate solution of (1) can be obtained by
setting p =1

Applications: Consider the following Drinfeld-Sokolov-
Wilson equation

With the following initial condition 

according to the homotopy perturbation, we construct the
following homotopy:
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or
With the iteration formula (12) we get

(9)

Suppose the solution of Eq. (9) has the for

(10)

Substituting (10) into (9) and equating the coefficients
of the terms with the identical powers of p

by setting p = 1

We start with initial approximations u(x,0) and v(x,0) given
by Eq. (8)

(11)

And  we  have  the  following   recurrent   equations   for
j = 1,2,3,...

(12)

An approximation to the solution of (7) can be obtained

Suppose and  the results are

presented in Table 1 and Fig. 1.

Fig. 1: The  numerical  results for   are, respectively (a)
and (c) 

CONCLUSIONS

In this article, we have applied homotopy
perturbation method for the solving the nonlinear
Drinfeld-Sokolov-Wilson equation The results show that
the homotopy perturbation method is a powerful
mathematical tool for solving systems of nonlinear partial
differential equations having wide applications in
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sciences and engineering. This method is introduced to 9. Biazar, J. and H. Ghazvini, Exact solutions for
overcome the difficulty arising in calculating Adomain nonlinear Schrödinger equations by He's homotopy
polynomial in Adomian method. In our work, we use the perturbation method Physics Letters A [In press].
maple package to carry the computations. 10. Ganji, D.D., 2006. The application of He’s homotopy
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