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Abstract: The detour index is equal to the sum of the distances between all pairs of vertices of the
connected graph on the longest path between corresponding vertices. The edge versions of detour index
were defined as the sum of distances between all pairs of edges of the connected graph on the longest path
between corresponding edges, recently. We define a generating function, which we call the edge detour
index polynomials, whose derivative is the edge detour indices when q = 1. We study some of the
properties of these polynomials and compute it for some common graphs.
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INTRODUCTION

The detour matrix is one of the particularly
important distance matrices which are based on the
topological distance for vertices in a graph. It was
introduces into the mathematical literature in 1969 by
Frank Harary [1] and it was discussed in 1990 by
Buckley and Harary [2]. The detour matrix was
introduced into the chemical literature in 1994 under
the name “the maximum path matrix of a molecular
graph” [3-7]. During these works, the detour index has
been defined for a connected graph G as follows:

D(G)= > Amv)

{u,v}gV(G)

where A(u,v) denotes the detour distance which is the
distance between the vertices u and v on the longest
path.

The detour index polynomial of a graph G was
introduced very recently as follows [8]. If q is a
parameter, then the detour index polynomial of G is

z qA(x.y)

{x.y}<V(G)

D(G;q) =

Also, the edge versions of detour index are the sum
of distances between edges of a connected graph G on
the longest path as follow [9]:

The first edge-detour index is:

> Ayed

{e.f]eV(L(G))

D, (G) = z Ay(e,f)=

{e.f}eE(G)

where Ay(u,v) is the detour index in Line graph L(G).
Here, the line graph L(G) is the intersection graph

of the edges of G, where vertices correspond to edges

of G and vertices in L (G) are adjacent if the

corresponding edges share a vertex.

The second edge-detour index is:

D,(G)= D, Afe,h)

{e.f}eE(G)
Where
A (e,f) +
A(e,f)=1""
S

and
A(e,f)= min{ Au,x), A(u,y),A(V,x),A(V,y)}

where e = uv and f =xy.
The third edge-detour index is:

D,(G)= Y. A(eD

{e.f}eE(G)
Where
A,(e,f) ,exf
Ae,f)=4""
O RO
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and
A,(e,f)= max { A(u,x),A(u,y),A(V,X), A(v,y)}

where e =uv and f =xy.

In this paper, we define the polynomials of edge
versions of detour index. And we study some of the
properties of these polynomials and compute it for
some well known graphs.

SOME DEFINITIONS AND RESULTS

We wish to define and study the edge detour index
polynomial in this section.

Definition 2-1: If q is a parameter, then the edge detour
index polynomials of a graph G is

D,(Giq)= D, q"“"

{e,f}eE(G)

where1=0,3,4
In what follows, we use |S| to describe the cardinal

!
}

then degf(g) is its degree and [q'1/(g) is the coefficient
ofq".

The next theorem summarizes some of the
properties of De; (G;g). Its proof follows easily from the
definitions and so is omitted.

of aset S. Also, if f(q) is a polynomial in g,

theedgeefisnoton

F :{{e,f} c E(G)

any cycleingraph L(G)

theedgeseandfareonly

T ={{e,f} c E(G)

ontriangleingraph L(G)

Theorem 2-2: Suppose i = 0,3,4, we have:

1. deg D (G;g) = diameter of G under distance A;.
2. [q"ID4(G;q)=0
3. [Q'ID4(G:q)=|H, [q'ID,(G;q)=|T]|
and [q']D,,(G:q) =|F|
4. D Gl) = ('E(zG)|j
5. D;'(G:)=Dy(G)

Now, we compute the edge detour index
polynomials of some familiar graphs K,, Kn, and G
which are complete graph, complete bipartite graph and
cycle, respectively. Before our computations we state
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Fig. 1: algorithm for finding the Hamiltonian cycle of
L(Ko)

some results and relations between distances Ay, A; and
A, for graphs K, Ky, and C,, in following.

In Fig. 1, the graph K, with the Hamiltonian cycle
on its line graph is shown.

The algorithm for finding the Hamiltonian cycle of
L(K,) due to Fig. 1 is:
1. Fix an edge which is placed on outer cycle of K.
We name this edge with a.
Move from a to its neighbor edge b on outer cycle
of K, by passing its other neighbors which are
common with b.
Move from b to its neighbor edge ¢ on outer cycle
of K, by passing its other neighbors which we did
not pass them during our moving.
Do the procedure 3 for edge ¢ and other edges
which are in outer cycle of K, and we reach them
during our moving.
Finally we reach to edge a after passing from all
edges of K;,. Therefore this cycle is Hamiltonian

Therefore, according to above explanations we
have the following result.

Result 1: The line graph of K, which is shown with
notation L(K,,) is Hamiltonian.

In Fig. 2, the graph Kg with the Hamiltonian path
between each pair of edges of Kg on its line graph is
shown. The case (i) shows the Hamiltonian path
between two edge which are on outer cycle of Kg, the
case (ii) shows the Hamiltonian path between two edge
which are not on outer cycle of Kg and the case (iii)
shows the Hamiltonian path between two edge which
one edge is on outer cycle of Kg and another is not.

The algorithm for finding the Hamiltonian path of
L(K,) due to Fig. 2-(i) is, n>4:

1. Fix two nonadjacent edges which is placed on outer

cycle of K,. We name these edges with a and b.
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(i)
Fig. 2: The graph Kg with the Hamiltonian path

OLFA

Fig. 3: Hamiltonian path

N

Move from a to its neighbor edge c.

3. Move from c to another edge which is on outer
cycle of K, and is neighbor of a by passing the
neighbor edges of a.

4. Do the procedure 3 for the last neighbor edge of a

and other edges which are in outer cycle of K, and

we reach them during our moving to edge b.

Finally we reach form a to edge b on Hamiltonian

path.

6. Therefore we can find the Hamiltonian between

each pairs of edges.

“

Therefore, according to above explanations we
have the following result.

Result 2: There exists a Hamiltonian path between each
pair of edges of K, (vertices of L(K,)) in L(K,).

In what follows, the parallel edges in complete
bipartite graphs and cycles is the edges which are
parallel geometrically. For example, the edges r and s in
following edges are parallel.

Claim 1: The line graph of complete bipartite graph
L(Kin) is Hamiltonian.

Proof: It is enough that we find a Hamiltonian cycle in
L(Knpn). For example, consider Fig. 4.
By the algorithm which is mentioned in Fig. 4 we
get the desire result. This algorithm is:
Consider a complete bipartite graph K,, which
consisted of parts of A and B.
1. Fix anedge a=uv whichueA and veB.
2. Move from a to its neighbor edges which is
common in vertex u.

a
c
¢
(i) (éii )
u
A
a
B b
V
Fig. 4: Bipartite graph K,
A
a b
B

Fig. 5: The vertices of Ky, that a and b are the outer
edges of Ky, as shown

3. Go from the last neighbor edge to the nonadjacent
parallel edge of a.

4. Move from mentioned edge to its neighbor edges
which is common in vertex that located in part A.

5. Do the processes of 4 and 5 before reaching to the
last nonadjacent parallel edge b with a.

6. Go from mentioned edge b to a by passing the
neighbor edges of b which have common vertex in
part A.

7. Therefore, by above algorithm we can find a
Hamiltonian cycle.

Claim 2: There exists a Hamiltonian path between each
pair of edges of Ky, (vertices of L(Kyny)).

Proof: According to the claim 3, two edges which are
adjacent the result is clear. Then, we prove the result for
nonadjacent edges. Consider the Fig. 5.

The algorithm which is mentioned in Fig. 5, is:

1. Consider a complete bipartite graph K,, which
consisted of parts of A and B.
2. Fix two nonadjacent edges a and b.
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3. rearrange the vertices of K, that a and b are the
outer edges of K, as shown in Fig. 5.

4. Move from a to its neighbor edges which are
common in vertex which is in part A.

5.  Go from the last neighbor edge to the first parallel
edge with a and do the process 4 for this edge.

6. Do the processes 4 and 5 before reaching to the

edgeb.
Therefore, we conclude the desire result.

Lemma 2-3: Let K, be the complete graph with n
vertex and e, feE(K,). Therefore we have:

Ao(e,f){;‘j—l,m(e,f):n

and Ay4(e,f)=n-1.

Proof: Suppose K, is the complete graph with n
vertices and e, feE(K,).

For computation the distance Aj, we must see the
line graph L(K,,) and according to the Claims 1 and 2, it
is clear that

n
Ao(e,f):(z]—l

For computation the distance A; and A4, we must
see the graph K,. According to the facts that graph
K, is Hamiltonian and there exist a Hamiltonian
path between each pair of vertices, Aj(e,f) = n and

A4(e,f)=n-1.

Lemma 24: Let K,, be the complete bipartite graph
which constructed by two set A and B such that [A| =n

and [B| = m, m<n and e, feE(K,,). Therefore, we have:

1. A(e,f)=mn-1
2. 1) Ifm<n,then
2m-1 , e,farenonadjacent
5 e,fareadjacentand
m
A (e, f) = havecommonvertexinsetB
e,fareadjacent and
2m-1 , .
havecommon vertexinsetA

i) Ifm=n,then A (e,f) =2m-1
3. 1) Ifm<n,then

2m e,farenonadjacent
e,fareadjacent and
2m .
A,(e,f)= havecommon vertexinsetB
e,fareadjacentand
2m-1 , .
havecommon vertex insetA

i) Ifm=n,then A,(e,f)=2m-1
Proof: Suppose Ky, be the complete bipartite graph,
m<n and e,feE(Kpy).

For computation the distance Aj, we must see the
line graph L(K,,) and according to the Claims 3 and 4,
it is clear that Ag(e,f) =mn-1.

For computation the distance A; and A4, we must
see the graph K,,. According to the facts that the
length of longest cycle is 2m in Ky, and there is or is
not Hamiltonian path between nonadjacent vertices,

we can conclude the desire results about As(e,f) and

A4(e.f).
In following results we use some notations for
simplifying our computations. These notations are:

C, ={{e.f} eE(C,,)|A,(e.) =n}
and
CZ = {{e’f} € E(CZnH)le(eaf) =n +1} .

Lemma 2-5: Let C, be the cycle and e,feE(C,).
Therefore we have:

Ay, -1=Ae,f)-1 , {ef}eC orC

AO(e’f): A3(e,f)=A4(e,f) s
A(e,f)=Ae.D)-1 0. W.

e,fisadjecent .

Proof: It is easily concluded from the shape of the
cycle C,,.

In following we state some results according to
above Lemmas.

Result 3: Let K, be the complete graph with n vertex.
Then,

(n +1)(n— 2)

_(n+1)(n—2) B
Dco(Kn)——2n D.;(K,) = T D.,(K,)
n
{36
2
2

Result 4: Let K, be the complete bipartite graph and

m<n. Then,
542
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M[Des(Km,“) - m(gn_ M(De4(Kln,n) + n(r;lj] ,m#n
D, (K, ) =mn(mn-1)={ 2™~ 2m .
(mn —1) (mn -1)
Tmot Do) = 5T Pl men
Result 5: Let C, be the cycle. Then, and
N q_z[q+ q2+...-¢—q772+n(%q’1+q71 )} ,niseven
Dc}(cn)_%:Dc4(Cn)_((2]_nJ ,niSeVen De4(cn;q): 24 0 - .
D,(C,)= qT(H— q+...+qT+n(q1+qT)J ,nisodd
D,(C,)-n=D 04(Cn)—((121]—nj ,nisodd
Proof: Due to the Lemmas (2-3, 2-4 and 2-5), the
. . desire results in 1 and 2 can be concluded. Therefore,
At following we state edge detour index

polynomials of K, K, and C,,.

Theorem 26: Let K,, Ky, and G, be the complete,
complete bipartite graphs and cycle, respectively and

suppose m<n. Then, we have:

L D,(Ka)= ['E(ZK"”]q[{ZJ'IJ, otk [0

and

)

E(K
De4(K,;Q):[| (2 ")Uq("“

E(K
2. Dy(K, ;9= [PK...) q™
2
2m-1 mn + n ( 1) "
m - ,m#n
q 2 5 q
De3(Km,n ’q) =
mn ) (om- men
2 )1 ’
and
2m-1 mn + m (1 ) -
n - ,m#n
q 2 2 q
De4(Km.n;q) =
mn ) (mi men
2 ’
% 2 22 1 =1 .
q*|q+q+...+q? +1‘1(5+q2 )| ,niseven
3. D,(C;q)= » - .
q7[1+q+...+q7+ n(1+ qT)j ,nisodd
2 L, 1 Lo
qz[q+qz+-~-+q2 +Il(5q*]+q2 )] ,niseven
D,;(C,;a)= i . M
q? (l+q+...+q 2 +n(q'+q ? )J ,nisodd

we prove only the third result. We have from the
definition of edge detour index polynomials for C,;:

n > . .
—q2+nq™ + Z %D niseven
eficE (¢)

ety

e, farenonadjacent

D,(Ciq) = el

nq 2 +nq(n4> + Ag(e.f)

q ,nisodd

fe.fcE(G)
{e.fleC

fleCy
¢, farenonadjacent

n
£q71+nq‘"” + e,

e ficE (G)
e.fleC,
¢.farenonadjacent

2

{e,f}gE(Cn)
{e,f}eC,
e

,niseven

D,Cia) =1 |
nq 2 +nq™ + Ao(eD

q ,nisodd

 farenonadjacent

and

n
Eq?‘ +ng™ + AgleD)

ef E% )
forkc,

¢, farenonadjacent

q ,niseven

De4(cx;q) =

n-1
nq 2 +nq"™ +
fe.fcE ()

e,f }eC:
e,farenonadjacent

Ag(e,f)

q ,nisodd

Also we have

n

n
- -2
Ayled) _ 12 ¢ 2
q =q q+ J+ ..+ q
}e.t‘];E )
e, fieC
e,farenonadjacent

and

n -+l

qT

qoeD =

eflcE(Q)
e fieC
e,farenonadjacent

Then with simplifying the edge detour index
polynomials of C,,, the desire result can be concluded.
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Result 6: The relations between edge detour index polynomials of K,,, Ky, which m<n and C, are as follows:

n’-3n-2 n’-3n

. Dy(K;q)=q ? Dy(K,;q9)=q * D.(K,:q)

(m 02 1) . m
q D,(X,;q)-n

m(n-2) . 0w
q" Dy K,iq)-m ,ja" " (@q-) m=n 5

2. D,(K;q)= and D, (K,;q) =

q"" "D, (K, :q) ,m=n q"""D,, (K ,:q)

4D (Cy3q) +(1- Q)(%qzﬂ + nq“'lJ ,niseven
3. De4(C“;q) :qDeO(C“;q)+n(1_q)qn—l _

n+1

qD(C,;9) +(1—q)[nqT+ +nq"'1J ,nisodd

Proof: Consider the graphs K, Ky, which m<n and C,. Therefore,
1. For graph K, we have

‘ E(K Mo n?-3n-2 E(K n?-3n-2
D, (K, q) g f}ZE‘,(C )qA"“’”—O (2 ")Uqw ). q ’ [' (2 ")jq" =q > D,(K,:q)
Deo(Kl;q)zl f}zEu;)qu(e,f):U (2 n)|]q[[2j ) =q 2 [| (2 n)]q(n-l) =q 2 De4(Kn;q)
©hs

Then, with easy computations, the desire results in (1) can be concluded.
2. For graph K;,, which m<n, we have

e mn mn —|
D,(K, 9= q““(’”—( ]q ‘

{e.flcE (G)

and
i) Ifm<n, then

mn n
De3(Km,“;q) _ Z qA3(e,f) _ qu—l +m qu—l(q_ 1)
{e,f}gE(C") 2 2
and
e,f mn m m m -]
D, K, )= 2 q““"=""|g"+n | (q-1)
ek () 2 2
i) Ifm=n, then

€ mn m- €, mn m-—
D,(K,.;)= 2. in('ﬂ_( 2]‘12 "and DK, )= D q* ﬂ_(z ]qz "

{e,f}gE(C") {e,f}gE )
Then, with easy computations, the desire results in (2) can be concluded.
3. For graph C, we have

Dy(Cia)= 2, q*“"= X "7+ 3 qMPe T ghe?

{e,f}gE(Cn) {e,f}d‘] orC, e,fareadjacent e,flcE(C)
e,fig€ andG
e,farenonadjacent

— Z qA”(e,f}H + Z qA ‘(e,f)+ Z qA"(e,f)Jrl

{e.f}@, orC, e,fareadjacent {e,f}cE ( <)
e,fleC andG
e, faenonadjacent

=q Y P+ d-q9 Y q%“"=gD,(C,;q)+n(1-q)q""
{e-f}gE(Q) e,fareadjacent

544
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. _ Ag(ef) _ Ay (e,f) Ay (e,f) Ay (e,f)
D, (Ciq)= D>, q*“"= > "7+ X M0+ q™

{e.f} E(C,) {e.f}eC | orC, e,fareadjacent {e.flcE ()
{e.fleC andG
e,farenonadjacent

— Z qu<e,f) + z qu(e,f) + qu(e,f)H
{e,f}djl orCy e,fareadjacent e,ficE(¢)
e,fjeC andG

=q Y q“"+(1-9
{e.flcE(G)

2

[e,fareadjacem

e,fare nonadjacent

2

{e,f}eClo rC,

un(e,f) +

qA3 (e.f)}

D (C,q)+ —q)(%qu +nq“l] ,niseven

ol
qDes(C,;Q)+(1—q)(nq2 1+nq“‘] ,nisodd

u .- v U_ E-
.-. .:'
Fedges —-{ ¢ redger —{ (' 5}4_ redge
XPY YT
(a) (5)
L!_ = : n o=y
Fedges P{H‘- redge Fedges \"Zé }4— redges
$T X1y
(c) (@)
u v B g
ot ;
g o o3 T \.\.’1
! [
‘:th--‘, . [ 7
(e) ()

Fig. 6: The quantity A'p(e, f) is r for shapes (a,b,c and
d) and is 1 for shapes (e and f).

Then, with easy computations, the desire results in
(3) can be concluded.

EDGE DETOUR INDEX POLYNOMIALS
DUE TO DISTANCES BETWEEN VERTICES

In following, we restate the edge detour index
polynomials according to distances between vertices.
For finding these polynomials, we must find the
relations among distances between edges with distances
between vertices.

Definition 3-1: Let e, feE(G), e = uv and f =xy. Fixa
longest path between edges e and f and name it P. We
define the quantity A'p(e, f) as follows.

A’y (e,f) =min{Ap (u,x), A, (0,Y),Ap (V,X),Ap(V,Y) }

where Ap is length of distances of vertices on path P.

545

Due to the fact that edge detour distances are
defined on longest path between edges, we can imagine
six case for two edge and longest paths between them.
These six case are shown in following Fig. 6.

Therefore, we partite the set of pair edges to
following subsets.

A= {{e,f} c E(G)| e,fareedgesthesameasFigure6(a)}

A, {{e,f} c E(G)] e,fareedgesthesameasFigure6(b)}
A, ={{e.f} cE(G)| e,fareedgesthesameasFigure6(c)}

A,

{{e,f} c E(G)] e,fareedgesthesameasFigure6(d)}

A ={{e.f} CE(G)| e,fareedgesthesameasFigure6(e)}

Aq

{{e,f} c E(G)] e,fareedgesthesameasFigure6(f)}

Then, we find the edge detour distances as follows:

Lemma 3-2: Let e,feE(G), e = uv and f = xy. Then,

A'(e,)+ 1 ,{e,f} €A,

A'(e,f)+ 1 ,{e,f}eA2

| A'(eD)+2 ,{e,f}e A,

Ao, = 3A'(e,f)+1 ,{e,f}eA4
A'(e,f)+2 ,{e,f}e A
4A'(e,f)+1 L{ef}e A,

A'(e,f) +1 ,{e,f} €A,
A'(e,H+2 {ef}eA,

A' 2 fleA

aen={ D2 e eA
A'(e,f) +2 ,{e,f} €A,
A'(e,H)+3 ,{e,f} e A
3A'e,D+1 L {e.f} eA,
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and
Ae,N+2 fefleA
A'(e,N+2 LfefleA,
A, D)= A'(e,f)+2 ,{e,f}eA3
3A'e,f)  L{efleA,
A'(e,f)+3 {e.fleA
3A'e,f) L{e,f}eA,

Proof: From the Definition (3-1), subsets of set of pair edges and Fig. 6, we can get the desire results.

Theorem 3-3: The relations between edge detour indices are:

Dyy(G)-D 4(G)=2 X A'(e,f>+{}2 A'en-[a-]a]-]a]
efleAq

{e.fleA,
and
D, (G)— De4(G)—{Z A'(ef)-|A | -|A)+| A=A +|A

e,fleAq

Proof: Due to the definitions of edge detour indices, Definition (3-1) and Lemma (3-2), we have:

D,(G)= > AhH= D AlDH+ D AlhH+ D AlhH+ D AlDH+ D AlD+ D AleD)

{e.flcE(G) {e.fleA {ef}eAr {ef}eAs {e.fleAy {efleAs {e,fleAs
= > (AehH+)+ D (AeH+1)+ D (A'e.N)+2)
{e.f}eA‘ ef} €A, {e f}eAj
+ > (3A'e ) +1)+ (A'e,D+2)+ D (4A'(e,H+1)
{efleA, {e.fleAs {e.fleAy
= AeD+ D 28D+ Y 3A'(eN)+|A]+|A,|+ 2A | +|A L +2]|A) +]A
{e.f}CE(G) {efleAs {e.fleAs

and

D,(G)= ), A(ef=z} A+ AlhH+ D Aleh+ Y Aleh)+ D Ag(e,f)+|z Ay(e,f)

{e.fl<E(G) {ef}feA, {e.f}eAs {ef}eAs {effeAs {e.f}eAq

= (A'e.H+1)+ D (A'e.D+2)+ D (A'(e.N)+2)

{e.fleA, {ef} &, {e.f} €Ay
+ 2 (A H+2)+ D (A'e,H+3)+ 2 (3A'(e,H+1)
{c,f}eA4 {c,f}eAS {c,f}eA6

= A+ D 2A'e.0) +| A+ 2|A,|+2|A |+ 2]|A,|+ 3|Al +|A4
{e,f} CE(G) {e.f}eAq

and

D,(G)= > AfeH= > AeD+ Ae D+ D Ae D)+ D Ale.DH+ D Ale.D)+ Y Ale,D)

{e.FlcE(G) {e.fleA, {e.f} eAr {e.fleAs {efleAs {e.fleAs {e.fleAs
(A'(e,D)+2)+ Z A'(e,)+2)+ Y (A'e.NH+2)
{e.fleA, {e.f} {e.f}eA;
+ (3A'(e.D) + D (Ae,n+3)+ D (3A'(e,D)
{e,f}eA4 {e, f}eA5 {e, f}EA6
= A+ D 2A'eD+ Y 2A'e.D) +2|A,| +2|A | +2|A,|+3|A]
{e.f} CE(G) {e.fle Ay {ef}eAs

Hence, the results can be concluded only with computing the differences of Deo(G), De3(G) and De4(G).

Theorem 3-4: The relations between edge-detour index polynomials are:
546



Middle-East J. Sci. Res., 10 (4): 539-548, 2011

(A'(e,T¥) (A'e.D+2)( (24" (e. )
D, (G DG =(1-0) ¥ ¢ ¥ g™ " g™

{efleA, {e,fleAy
(A'(e.D+2) (3A'(e,0)+1) A'(e,f)
-0 ¥ q" X g (g )
{e,f}eA5 {evf}EAo

and

(A'(e.D+1) (A'(e.D+1)
Dco(G;q)—Dc4<G;q):(1—q){ > q (g ){ > )
e.fleA, effeA;

q
+(q—1) Z q(sA'<eﬂ qA(ef)+2 . z q(3A'(e,f})(q(A'(e,ﬂ+l)_1)

{e,f}eA4 e f}eA) {e,f}eAb

Proof: Due to the definitions of edge detour index polynomials, Definition (3-1) and Lemma (3-2), we have:

DO(G’q): Z qu(e,ﬂ: z qu(e,f)+ Z qu(e,f)+ Z qu(e,f)+ Z qu(e,f)+ z qu(e,f)+ Z qu(e,f)

{e.f}cE(G) {e.fleA, {e.f}eA,

{e.fleA; {e.fleA, {e.fleAs {e.fleAq
(A'(e,f)+1) (A'(e,f)+1) (A'(e,)+2) (3A'(e,H)+1) (A'(e,)+2) (4A'(e,H+1)
> q + q q + q + 2 q + > q
{e.fleA, {e.f}eA, {e, f} €Ay {e f}eA, {e.fleAs {e.fleA,
De}(G;q)— qu(e ) Z qu(e.f)+ Z qu(e.f) + Z qA3(e.f)+ Z qu(e.f)+ Z qu(e.f)_i_ Z qu(e.f)
{e.flcE(G) {e.fleA; {e.fleA, {e.fleA, {e.fleA, {e.fle A {efle A
(A'(e,f)+1) (A'(e,n+2) (A'(e,0)+2) (A'(e,)+2) (A'(ef #3) (3A'(e,N+1)
qQ +2qg +2q +2q +2q *+2q
{e f}eAl {e £} e, {e.f} €A,y {e,f}eA4 {e,f}eA5 {e,f}eA6
De4(G;q): qA4(e,f): Z qA4(e,f)+ Z qA4(evf)+ Z qA4(e,f)+ Z qA4(e,f)+ Z qA4(evf)+ Z qA4(e,f)
{e,f}gE(G) {e,f}eA] {e fleA, {e f}eA1 {e.f}eAA {e,f}eA5 {e.f}eA
(A'(e,)+2) (A'(e,f)+2) (A'(e,0)+2) (3A'(e,D) (A'(e,£)+3) (3A'(e,D)
- ¥ ¢ X g X g X g X 7 X g
{e,f}eA‘ {e,f}eAz {e, t}eA3 {e f}eA4 {e,f}eAS {e,f}eA6

Hence, the results can be concluded only with computing the differences of D¢o(G), De3(G) and De4(G). Then

{e,f}EAz

(A'(e,)+2) (A'(e,H)+3) (42" (e, f¥1) (34 '(e,B)+1)
f 2 X (g

{e.fleAs {e.fleAq

(A'(e.D+1) (A'(e.+2) (24'(e.H)-1)
=(-0) 2 q" 2 g™ g )

{ {e,f}eA4

(A'(e,f)2) (34'(e,N+1) A'(e,f)
DI D I R )

e t}eAi {e,f}s;A6

(A'(e.D)+1) (A'(e.D)+2) (3A'(e.D)+1) (A'(e,N)+2)
D, (G -DuG =+ ¥ (q*""-q" ")+ ¥ | Q")
{e.fleAs

D,,(G;q) -D ,(G;q)= Y. (q(M”)“) B q(A'<e,f>+z)) Py

A'e,f)+1 A'e,N+2
( ) ( )
{e.fleA;

(g

{e,f}eAz
(3A'(e,0)+1) (3A'(e,D) (A'(e,n+2) (A'(e,n+3) (44'(e,H+1) (3A e, )
LX) T fa
{e t}eA4 {e.f} €A {e,f}sl\s
(A'(e,D+1) (A'(e,f3)
=(1-9) 2 q +(1-q) 2. q
{e.fleA, {e.fleA,
(3a'(e.) (A'(e.D+2) (3ae.n)[  (A'e,f)+1)
+(q-1 +(1-q) > q +2.q (q —1)
{efleA, {e.fleAs {efleAq

In following, we simplify the new formulates or edge detour indices and edge detour index polynomials for
molecular graph of zigzag polyhex nanotubes. We use the notationa p and q for the number of hexagons between
two rows and number of rows, respectively. In Fig. 7, you can see the molecular graph of zigzag polyhex nanotubes
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Fig. 7: (a) A zigzag polyhex nanotube, (b) Its 2-dimentional lattice, p =10 and q =9

Theorem 3-5: The relations between edge detour
indices of the molecular graph G of zigzag polyhex
nanotubes are:

D.(G)-D(G)= —[2p(;‘]+(q—l>[§j]

Proof: Let G be the molecular graph G of zigzag
polyhex nanotubes. Due to the Fig. 7, the subsets Aj,
Ay, As and A are empty and then,

E(G
gl

and
3pq-p

DcO(G)_Dcét(G):_( 2

Therefore we have

D,,(G)-D,(G)=-|A,]
and
D, (G) -D ,(G) = —(|A| +]A,])

And since |[E(G)| = 3pg-p and

(4 NG
|A2|—2p@+(q 1)@

we can conclude the desire results.

Theorem 3-6: The relations between edge-detour index
polynomials of the molecular graph G of zigzag
polyhex nanotubes are:

(A'(e,f)+1)
D,,(G;q) D (G;q) = (1~

{e,f}eAz

and

(A'(e,)+1)

) 2 .q

e c

eO(G q) De4(G q)

548

Proof: Let G be the molecular graph G of zigzag
polyhex nanotubes. Since the subsets Az, Ay, As andAg
are empty and

E(G
Tt
2
the desire results can be concluded easily from
Theorem (3-4).
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