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Exp-Function Method for Generalized Regularized Long-wave Equation
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Abstract: In this paper, exp-function method is used to construct generalized solitonary solutions of the
generalized regularized long-wave equation. It is shown that the Exp-function method, with the help of symbolic
computation, provides a straightforward and powerful mathematical tool to solve nonlinear evolution equations
with forcing term in mathematical physics.

Key words:Exp-function method  Solitary solution  Periodic solution  Generalized regularized long-wave
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INTRODUCTION  = kx + wt (2)

The nonlinear partial differential equations [1-291] Where:
plays a pivotal role in the mathematical modeling of k and w are constants, we can rewrite Eq. (1) in the
diversified physical phenomena. Finding exact solutions following nonlinear ODE.
[1-21] of nonlinear evolution equations (NLEEs) has
become one of the most exciting and extremely active Q(u,u ,u , u , u , u ,...) =0 (3)
areas of research investigation. The investigation of exact
travelling wave solutions to nonlinear evolution According to the exp-function method, which was
equations plays an important role in the study of non- developed by He and Wu [6, 7], we assume that the wave
linear physical phenomena. The wave phenomena are solutions can be expressed in the following form.
observed in fluid dynamics, plasma, elastic media, optical
fibres, etc. Many effective methods have been presented (4)
such as variational iteration method [1], homotopy
perturbation method [2], Adomian decomposition method
[3] and others [4]. The aim of the present paper is to Where:
extend the exp-function method to find new solitary p,q,d  and  c  are   positive   integers   which   are  known
solutions and periodic solutions for generalized to be further determined, a  and b  are unknown
regularized long-wave equation. Recently Jafari et al. [5] constants. We can rewrite equation (4) in the following
used the sine-cosine and the tanh methods to obtain equivalent form. 
solutions of the generalized regularized long-wave
equation. (5)

Exp-function Method:  The  exp-function  method  was
first proposed by He and Wu [6, 7] and systematically This  equivalent  formulation  plays   an  important
studied to a class of nonlinear partial differential and  fundamental  part  for  finding  the analytic solution
equations [8-11, 19-21]. We consider the general nonlinear of problems. To determine the value of c and p, we
partial differential equation of the type. balance the linear term of highest order of equation (4)

P(u,u ,u ,u ,u ,u ,...) =0 (1) determine the value of d and q, we balance the linear termt x tt xx xxx

Using a transformation linear term.

(iv) (v)

n m

with the highest order nonlinear term. Similarly, to

of lowest order of equation (3) with lowest order non
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The Generalized Long-wave Equation:  We consider the and
generalized and regularized long-wave equation (RLW)
[12]:

u  + u  + a(u )x u  = 0 (6)t x xxt
p

Where:
p is a positive integer,  and  are positive constant. This
equation was first put forward as a model for small
amplitude long waves on the surface of water in channel
by Peregine [13, 14] and later by Benjamin et al. [15].
Introducing a transformation as  = kx + wt  and p = 2, we
can covert equation (6) into ordinary differential
equations

wu  = ku  +2akuu k wu (7)2

Where:
the prime denotes the derivative with respect to . The
solution of the equation (7) can be expressed in the form
of equation (6).

To determine the value of c and p, we balance the
linear term of highest order of equation (7) with the
highest order nonlinear term.

(8)

and
(9)

Where:
c are determined coefficients only for simplicity;t

balancing the highest order of exp-function in (8) and (9),
we have.

7p = c = 6p + 2c (10)

Which in turn gives

p = c (11)

To determine the value of d and q, we balance the
linear term of lowest order of equation (7) with the lowest
order non-linear term.

(12)

(13)

Where:
d  are determined coefficients only for simplicity. Now,t

balancing the lowest order of exp-function in (12) and (13),
we have

2d  6q = d  7q (14)

Which in turn gives

q = d (15)

We can freely choose the values of c and d, but we
will illustrate that the final solution does not strongly
depend upon the choice of values of c and d. For
simplicity, we set p = c = 1 and q = d = 1, then the trial
solution, equation (6) reduces to.

(16)

Substituting equation (16) into equation (7) we have

(17)

Equating the coefficients of ( n) to be zero, we obtain

      {c  = 0,c  = 0,c  = 0,c  = 0,c  = 0,c  = 0,c  = 0}3 2 1 0 1 2 3

(18)

Solution of (18) will yield

(19)

We, therefore, obtained the following generalized
solitary solution u(x,t) of equation (6).

(20)

Where: a ,b ,b ,a ,k and  are real numbers.1 0 1 0
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Fig. 1: Soliton solution for the problem.( Eq.(20))

Fig. 2: Soliton solution for the problem.(Eq.(22))

(21)

Soliton solution of equation (6), when b  = 2, k = 2, =1

1/2, b  = 1, a  = 1, is0 0

(22)

CONCLUSION

The exp-function method has been used to obtain
generalized solitonary solutions of the generalized
regularized long-wave equation. This method can also be
extended to other NLEEs. The Exp-function method is a
promising and powerful new method for NLEEs arising in
mathematical physics. Its applications are worth further
studying.
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