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Abstract:  In this paper, the -expansion method is employed to obtain exact traveling wave solutions of

the generalized shallow water wave (GSWW) equation in forms of the hyperbolic functions and the
trigonometric functions. The solutions gained from the proposed method have been verified with those
obtained by the Hirota’s method and the tanh–coth method. It is shown that the -expansion method

provides a very effective and powerful mathematical tool for solving nonlinear evolution equations in
mathematical physics.
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INTRODUCTION obtain explicit travelling and solitary wave solutions of

Considered as a fascinating element of nature,
nonlinearity is regarded by many scholars as the most
significant  frontier  for  the  fundamental understanding
of nature. Many complex physical phenomena are
frequently  described  and modeled by nonlinear
evolution equations (NLEEs), accordingly, the exact or
analytical solutions of the discussed nonlinear evolution
equations prove to be of utmost importance, which is
considered not only a valuable tool in checking the
accuracy of computational dynamics, but also a
conspicuous help to readily understand the essentials of
complex  physical  phenomena such as the collision of
two solitary solutions. In the numerical methods [1, 2],
stability and convergence should be  considered,  so as
to avoid  divergent  or  inappropriate  results.  However,
in  recent  years,  a  variety of effective analytical and
semi-analytical   approaches    have   been   suggested  to

NLEEs,  such  as  the variational  iteration   method (VIM)
[3-6], (HPM) [7-9], the parameter-expansion method [10],
the sine-cosine method [11], the tanh method [12,13], the
homotopy analysis method (HAM) [14], the
homogeneous balance method [15],  the  inverse
scattering  method  [16], the Exp-function method [17-26]
and others.

Recently, the -expansion method, first introduced

by Wang et al. [29], has become widely used to search for
various exact solutions of NLEEs [21, 30-33]. The value of
the -expansion method is that one treats nonlinear

problems by essentially linear methods. The method is
based on the explicit linearization of NLEEs for travelling
waves with a certain substitution which leads to a
second-order differential equation with constant
coefficients. Moreover, it transforms a nonlinear equation
to a simple algebraic computation.
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Clarkson and Mansfield [28], investigated the Where U=U( ) and prime denotes the derivative with
generalized short water wave (GSWW) equation given by respect to  and  are constants. To keep the solution

process as simple as possible, the function Q should not
(1) be a total -derivative of another function. Otherwise,

Where  and  are non-zero constants. transformed equation.
Many authors have studied some types of solutions Suppose that the solution of Eq. (3) can be expressed

of the above Equation. To mention, Wazwaz [27],
successfully examined solitary wave solutions to the
GSWW equation by means of the Hirota’s method,
tanh–coth method and Exp-function method.

Considering all the indispensably significant issues
mentioned above, the objective of this paper is to
investigate the travelling wave solutions of Eq. (1)
systematically, by applying the -expansion method.

Some previously known solutions are recovered as well
and, simultaneously, somemore general ones are also
proposed.

The -expansion Method: Suppose we have a

nonlinear partial differential equation (NLEE) for u(x,t) in
the form

P(u,u u ,u ,u ,u ,...) = 0 (2)x t xx tt xt

Where u(x,t) unkown function and dependent to x, t
varabiles and P is a polynomial in u(x,t) and its partial
derivatives, in which the highest order derivatives and
non-linear terms are involved. The transformation
u(x,t)=U( ), =x- t reduces Eq. (2) to the

Q(U, U', U'', …) = 0 (3)

taking integration with respect to  further reduces the

by a polynomial in  as follows:

(4)

Where  G=G( )   satisfies   the   second  order  LODE in
the form

G"+ G'+µG=0 (5)

Where , ,  0,..., , ,  and µ are realm 1 0

constants to be determined later.
So,   a    direct   computation   with   use   from  Eqs.

(4( and (5) gives

(6)

(7)

and so on, in other hands with using the general silutions
of Eq. (5) we have

(8)

To determine U explicitly, we take the following four steps:

Step 1: Determine the integer m by substituting Eq. (4) along with Eq. (5) into Eq. (3) and balancing the highest order
nonlinear term(s) and the highest order partial derivative.
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Step 2: By substituting Eqs. (4) and (5) into Eq. (3) with the value of m obtained in Step 1 and collecting all term(s) with
the same order of  together, the left-hand side of Eq. (3) converted into polynomial in . Then setting each

coefficient to zero, we obtained a set of algeratic equations for , µ, ,  and .0 i

Step 3: Solve the system of algebratic equations obtained in step 2 for ,  and  by use of Maple.0 i

Step 4: By substituting the results obtained in the above  steps,  we  can  obtain  a  series  of  fundamental  solutions
of Eq. (3).

The Generalized Shallow Water Wave (GSWW): In this section, we investigate the generalized shallow water wave
(GSWW) with the -expansion method to construct the exact traveling wave solutions.

We consider the generalized shallow water wave (GSWW). 

(9)

Making the transformation u=u = v , Eq (9) becomesx

(10)

Using the wave variable =x- t, the system (10), is carrried to a system of ODEs

(11)

and integrating Eq (11), once with respect to  and setting the integration constant as zero yields

(12)

Balancing (v')  with v''' in Eq (12), gives 2m+2=m+3 so that m=1.2

Suppose that the solution of ODE (12) can be expressed by a polynomial in  as follows:

(13)

Where ,  are unknown constants that to be determined later.0 1

On substituting (13) into (12), collecting all terms with the same powers of  and setting each coefficient to zero,

we obtain the following system of algebraic equations for , µ, ,  and , as follows:0 1
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On solving the above algebraic equations by using the Maple, we get

(14)

Where , µ,  are arbitrary constants and ,  nonzero constants.0

Therefore, by substitute (14) into (13), we can obtain that

(15)

Substituting the general solutions (8) into Eq. (15), we have two types of travelling wave solutions of the generalized
shallow water wave (GSWW).

When –4µ>0, we obtain hyperbolic function solutions,2

(16)

in which =x- t and C ,C  are arbitrary constants.1 2

When –4µ<0, we obtain trigonometric function solutions,2

(17)

Where =x- t and C ,C  are arbitrary parameters that can be determined by the related initial and boundary conditions.1 2

 Now, to obtain some special cases of the general solution (16), we set C  0, C  = 0 and C  = 0, C  0 respectively, then1 1 1 2

it is obvious that

(18)

(19)

in which >1.
Recall that u(x,t)=v (x,t), we get the formal solitary wave solution of Eq. (1) as follows:x

(20)

(21)

valid for >1 follow immediately.
If we choose C  0, C  = 0 and C  = 0, C  0, in Eq. (17), respectively, then the general solution (17) reduces to1 2 1 2
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(22)

(23)

Recall that u(x,t)=v (x,t), Then we can obtain the general trigonometric function solutions of Eq. (1) as followsx

(24)

(25)

Where <1. REFFERENCES
Comparing the particular cases of our general

solutions, Eqs. (20, 21, 24, 25), with Wazwaz’s results, Eqs.
(57-60) in [27], it can be seen that the results are the same.

Remark 1: All the travelling wave solutions of Eq. (1)
obtained by the tanh–coth method and the Hirota’s
method in [27] are particular cases of our general
solutions.

Remark 2: We have verified all the obtained solutions by
putting them back into the original equation (1) with the
aid of Maple 13.

CONCLUSIONS

To sum up, the purpose of the  study  is  to  show
that exact travelling wave solutions of the GSWW
equation can be obtained by the -expansion method.

These solutions include hyperbolic function solutions
and trigonometric function solutions. When the
parameters are taken as special values, the solitary wave
solutions are derived from the hyperbolic function
solutions. The final results from the proposed method
have been compared and verified  with  those  obtained
by  the  Hirota’s  method  and  the  tanh–coth  method.
We also found more general solutions which are not
obtained by the other existed methods. Overall, the results
reveal that the -expansion method is a powerful

mathematical tool to solve nonlinear partial differential
equations (NPDEs) in the terms of accuracy and
efficiency. This is important, since systems of NPDEs
have many applications in engineering.

1. Borhanifar, A. and R.  Abazari,  2010.  Numerical
study of nonlinear Schrodinger and coupled
Schr¨odinger  equations by differential
transformation  method.  Optics Communications,
283: 2031-2036.

2. Borhanifar, A., M.M. Kabir and A. Hossein Pour,
2011. A Numerical Method for Solution of the Heat
Equation with Nonlocal Nonlinear Condition. World
Applied Sciences J., 13(11): 2405-2409.

3. He, J.H., G.C. Wu and F. Austin, 2010. The variational
16. Ablowitz, M.J. and H. Segur, 1981. Solitons and
iteration method which should be followed. Nonlinear
inverse scattering transform. SIAM, Philadelphia.
Science Letters A, 1(1): 1-30.

4. He, J.H., 2007. Variational iteration method-Some
recent results and new interpretations. J.
Computational and Applied Mathematics, 207: 3-17.

5. Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Variational   Iteration     Method      for    Solving
Flierl-petviashivili Equation Using He's Polynomials
and Pade´ Approximants. World Applied Sciences J.,
6(9): 1298-1303.

6. Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Modified Variational Iteration Method for Solving
Sine-Gordon Equations. World Applied Sciences J.,
6(7): 999-1004.

7. He, J.H., 2006. New interpretation of homotopy
perturbation  method.   Int.   J.   Mod.   Phys. B,
20(18): 2561-8.

8. Yildirim, A., S. Sariaydin and S.T. Mohyud-Din, 2010.
Homotopy Perturbation Method for Boundary Layer
Flow on a Continuous Stretching Surface. Nonlinear
Science Letters A, 1(4): 385-390.



'( )G
G

'( )G
G

'( )G
G

'( )G
G

'( )G
G

Middle-East J. Sci. Res., 10 (3): 310-315, 2011

315

9. Ali Khan, R. and M. Usman, 2010. Long Time 23. Kabir,  M.M.,   A.   Khajeh,  E.  Abdi  Aghdam  and
Dynamics of Forced Oscillations of the Korteweg-de A. Yousefi Koma, 2011. Modified Kudryashov
Vries Equation Using Homotopy Perturbation method for finding exact solitary wave solutions of
Method. Studies in Nonlinear Sciences, 1(3): 57-62. higher-order nonlinear equations. Math. Methods

10. Wang, S.Q. and J.H. He, 2008. Nonlinear oscillator Appl. Sci., 34: 213-219.
with discontinuity by parameter-expansion method. 24. Borhanifar, A. and M.M. Kabir, 2009. New periodic
Chaos, Solitons and Fractals, 35(4): 688-691. and soliton solutions by application of Exp-function

11. Wazwaz, A.M., 2005. A class of nonlinear fourth method for nonlinear evolution equations. J.
order variant of a generalized Camassa-Holm Computational     and       Applied     Mathematics,
equation with compact and noncompat solutions. 229: 158-167.
Appl. Math. Comput., 65(2): 485-501. 25. Borhanifar, A., M.M. Kabir and M. Vahdat Lasemi,

12. Wazwaz, A.M., 2005. The Camassa-Holm-KP 2009. New periodic and soliton wave solutions for the
equations with compact and noncompact traveling generalized Zakharov system and (2+1)-dimensional
wave solutions. Applied Mathematics and Nizhnik-Novikov-Veselov system. Chaos, Solitons
Computation, 170: 347-360. and Fractals, 42: 1646-1654.

13. Malfliet, W., 2005. The tanh method: a tool for 26. Borhanifar, A. and M.M. Kabir, 2010. Soliton and
solving certain classes of non-linear PDEs. Periodic solutions for (3+1)-dimensional nonlinear
Mathematical Methods in the Applied Sciences, evolution equations by Exp-function method.
28(17): 2031-2035. Applications and Applied Mathematics: International

14. Hosseini, M.M., S.T., Mohyud-Din, S.M. Hosseini Journal (AAM), 5(1): 59-69.
and M. Heydari, 2010. Study on Hyperbolic 27. Wazwaz, A.M., 2008. Solitary wave solutions of the
Telegraph Equations by Using Homotopy Analysis generalized shallow water wave (GSWW) equation
Method. Studies in Nonlinear Sciences, 1(2): 50-56. by Hirota’s method, tanh–coth method and Exp-

15. Fan, E. and H. Zhang, 1998. A note on the function method. Applied Mathematics and
homogeneous  balance  method.   Phys.   Lett. A, Computation, 202: 275-286.
246: 403-406. 28. Clarkson, P.A. and E.L. Mansfield, 1994. On a shallow

16. Ablowitz, M.J. and H. Segur, 1981. Solitons and water wave equation. Nonlinearity, 7: 975-1000.
inverse scattering transform. SIAM, Philadelphia. 29. Wang,    M., X.     Li    and    J.     Zhang,    2008.

17. He, J.H. and X.H. Wu, 2006. Exp-function method for
nonlinear wave equations. Chaos, Solitons and
Fractals, 30(3): 700-8.

18. Wu, X.H. and J.H. He, 2007. Solitary solutions,
periodic solutions  and compaction-like solutions
using the Exp-function method. Computers and
Mathematics with Applications, 54: 966-986.

19. Zhang, S., 2010. Exp-function Method: Solitary,
Periodic and Rational Wave Solutions of Nonlinear
Evolution Equations. Nonlinear Science Letters A,
1(2): 143-146.

20. Khajeh, A.,  A.  Yousefi-Koma,  M.  Vahdat  and
M.M. Kabir, 2010. Exact Travelling Wave Solutions
for Some Nonlinear Equations  Arising  in Biology
and  Engineering.  World  Applied   Sciences  J.,
9(12): 1433-1442.

21. Kabir, M.M., 2011. Analytic solutions for generalized
forms of the nonlinear heat conduction equation.
Nonlinear   Analysis:    Real   World  Applications,
12: 2681-2691.

22. Kabir, M.M. and A. Khajeh, 2009. New explicit
solutions for  the  Vakhnenko  and  a  generalized
form of the nonlinear heat conduction equations via
Exp-function method. Int. J. Nonlinear Sciences and
Numerical Simulation, 10(10): 1307-1318.

The -expansion method and traveling wave

solutions of nonlinear evolution equations in
mathematical physics. Phys. Lett. A, 372: 417-423.

30. Zedan,   H.A.,     2010.    New   classes   of   solutions
for  a  system  of partial differential equations by

-expansion method. Nonlinear Science Letters A,

1(3): 219-238.
31. Abazari, R., 2010. The -expansion method for

Tzitzéica type nonlinear  evolution equations.
Mathematical       and         Computer      Modelling,
52: 1834-1845.

32. Kabir, M.M., A. Borhanifar and R. Abazari, 2011.
Application of -expansion method to Regularized

Long Wave (RLW) equation. Computers and
Mathematics with Applications, 61(8): 2044-2047.

33. Kabir, M.M. and R. Bagherzadeh, 2011. Application
of -expansion method to Nonlinear Variants of

the (2+1)-Dimensional Camassa-Holm-KP Equation.
Middle-East J. Scientific Research, 9(5): 602-610.


