Middle-East Tournal of Scientific Research 10 (2): 247-259, 2011

ISSN 1990-9233
© IDOSI Publications, 2011
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Abstract: This paper presents a new approach to solve synchromzation problem of a large class of chaotic
systems. The synchronization problem for this class of nonlinear systems is revisited from a control perspective

and it 1s argued that the problem can be viewed as an adaptive control problem. In this regards, a new adaptive

control method 13 proposed and then it is applied to the three novel chaotic systems including a 4-D

(hyperchaotic) system and the two 3-D systems. The 4-D system represents a new four-wing hyper-chaotic
attractor whereas the two 3-D systems show the transverse butterfly attractor and also they can be realized with

an electronic oscillator circuit. Based on the Lyapunov stability theorem and Barbalat’s lemma, it is shown that

the error of the synchromzation asymptotically converges to zero as well as time goes to mfinity. Sunulation

results show effectiveness of our propositions.
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INTRODUCTION

In recent years, due to potential application of chaos
synchronization in various fields, it has received much
attention from researchers. Some practical applications of
the chaos synchronization are secure communications,
biological science, chemical processes and optics.
The first chaos synchronization scheme was introduced
by Pecora and Carroll in [1]. Then, many researchers
became interested to study on this issue such that a lot
of investigations were represented in literature which
many of them are based on the control techniques.
These mclude adaptive control [2], backstepping method
[3]. shiding mode control [4], observer based control
method [5] and so on. Among them, since in practical
situations, knowledge of exact parameters of the model
may not exist, the adaptive control methods have been
huge welcomed by the authors such that there are a lot of
worls concerned with it in literature. For example C. Zhu
in [6] has performed the adaptive synchronization of two
novel hyperchaotic systems with partially unknown
parameters. Also, the synchromization action between
hyperchaotic Chen system and generalized Henon—Heiles
system was investigated by X. Wu et al. in [7] wherein
only parameters of the drive system are assumed to be
unknown. Y. Wu et al. [8] have presented an adaptive

method to synchronize special identical chaotic systems
that are called T system. Another work was represented
by ¥X. Chen and I. TLu [9]

synchronization action between Lorenz-Chen, Chen-Lu

In that paper, the

and Lu-Rossler systems are investigated m three
examples. Also, the synchronization of the identical novel
hyperchaotic systems reported in [10] was investigated
by X. Zhou et ol [11] via adaptive control method.
However, 1n the above mentioned works we see that the
main results of the papers were devoted to the special
chaotic systems and they have not introduced general
method for other systems. Nevertheless, in some papers,
for general cases, several adaptive synchromzation
methods are proposed. For example, H. Zhang et al. [12]
introduced a theorem which gives control and updating
laws to synchronize non-identical fully unknown chaotic
systems. However, theorem in [12] does not cover
identical systems such as what considered in [13]. In
the same way, in [14] a new adaptive method has been
proposed that is more general than the theorem in [12].
W. Xu et @l 1n [15] have also introduced two adaptive
chaos synchromization methods for a class of chaotic
systems. First method considers the identical systems
and second is concerned with the case of non-identical
different order chaotic systems. In this class one can find

several papers such as [16].
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This article presents a new adaptive control method
to synchromize identical chaotic systems with fully
unknown parameters. In our proposed method, only
unknown parameters of the slave system are adapted and
they are simultaneously used both in the input control
and in that system. Moreover, this approach is applied to
some novel chaotic systems expressed m [17-19]. To the
best of our knowledge, no work 1s reported related to the
adaptive synchronization of these systems until now.
In addition, computer simulation results are presented to
verify the effectiveness of the proposed method.

This paper 1s organized as follows. In Section 2,
after statement of the problem, the new adaptive
chaotic
systems has been introduced in a theorem. In Section 3,

synchronization method for two  identical
the three novel chaotic systems will be expressed and
the proposed method will be applied to them. Also the
simulation results are represented there. Finally, Section
4 represents some conclusions.

System Mathematical Model and Problem Description:
In this section synchronization of two identical chaotic
systems in a general form has been investigated via
adaptive control method. To this aium, let us consider the
drive system dynamic is given in the form as follows

x=f{x)+ Flx) (1)
Where x € R” is the drive state vector and & € R" is the
unknown parameter vector of the drive system. fx) is an
nx1 vector valued function and F(x) is an »xm matrix
valued function. On the other hand, the response system
dynamic is

7= S+ F ()G +u(t) )
Where x € R" is the slave state vector, z=zpm i the

uncertain parameter of the response system that is to be
estimated and u(f) € R* 1s the control input vector.

Remark 1: Note that the dynamic equation of many
chaotic systems can be described by (1) and/or (2).
For example Chen, Lorenz, Lu, Rossler systems are the
umportant samples of them.

Here, our objective is to design controller, u(?),
such that the response system state, (), follows the
drive system state, x(f). In other words, by defiung
e(f) = y(f) — x(), to synchromze systems (1) and (2), we
should have
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3

lim [le(z)| — ©
t—pe0

Where ||| denotes & mnorm operator. According
to(l) and (2), the emor dynmamic can be written
as follows

é(t) = p1) - x(1)
= SN o)+ [F )6 - [F(x(2)]or+ ult)
(4

So, 1t 18 rather easily shown that the optimal
control to perform the synchronization action can

be designed as

u(l) = j (&) — f ) + [F(x(@) o —[F(p(1)]d - Ke
(5)

Where K is #sxm positive definite matrix. However,
the controller in (5) 1s
control because it contams unknown parameter ¢ and
& Tn order to remove this deficiency, a suitable

not an applicable input

approach is to use the estimation of the unknown
parameters. For this reason, in the followmg theorem,
we have proposed a new adaptive controller m which
only the unknown parameters of the response system,
&  are estimated.

Theorem: The two identical chaotic systems (1) and (2)
can be synchronized globally and asymptotically if the
controller u(f) is selected as

ult) = f(x(0) = f{yO)+[F(x() — F(p(t)]@ - Kelr)
(6)
such that & is adapted by

G =—[F(x(O] e(n) (7)

Where K is an #*n positive definite constant matrix.

Remark: Notice that the estimation parameter, @, is
simultaneously used both in the response system and in

the controller.

Proof: By replacing proposed adaptive controller (6) in
error dynamic (4), we have

e(r) =[F (x()](@ - ex) - Ke(r) (8)

Now, to show the asymptotic stability of (8), let us
consider the following Lyapunov candidate function



Middle-East J. Sci. Res., 10 (2): 247-259, 2011

V(= %(22 +a%) ©

Where d¢=&-o . By taking derivation from ¥ with respect
to the time and making use of (8) and updating law (7) it
can be shown that

Vini=é (De()+ & @
=@ [F) eln)- & [F(x)] el)- & (DK e(t)

= e Ke<0

(10)
Since the Lyapunov function (9) is a positive
definite function and its derivative is negative

semi-defimte, we can conclud that e{).&€in where
L. denotes a normed lnear space consisting any
matrix-valued function with bounded infinity-norm.
On the other hand, for the positive definite matrix K we
can assume that ¥ I < K, where ¥ 1s a positive constant

and therefore

—ye' (Ne(f) = —e' (HKe(t) (I
By mtegrating from above equation we have
£ £
—yjef (T)e(T)dT < jV(T)df (12)
0 0
and so
t 1 40
.[ef’edz < ;[V(O) ROE % (13)

0

Thus, it 1s obvious that ¢ € L, (L, 18 a normed
linear space with bounded 2-norm). From (4) we have
¢€ly . According to Barbalat’s lemma [20], we can
conclude that tlimwe(t)=0 which means the two identical
chaotic systems ?1) and (2) are synchromized globally and
asymptotically. This completes the proof.

Application to Three Novel Chaotic Systems: Tn this
section, to show the effectiveness of our proposed
adaptive method, we want to apply it to the three
new chaotic systems. The first system is reported
by 8. Cang et al in [17] which is a 4-D hyperchaotic
system with four wing attractors. Two other novel
chaotic systems recently introduced m [18] and [19].
However, to the best of our knowledge, any adaptive
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synchronization for these systems has been presented
in literature up to now. In the sequel of the paper, these
chaotic systems are briefly reviewed and the simulation
results are represented.

First Example: The first novel chaotic system that we
want to consider has been reported in [17]. The dynamic

equation of the system 1s shown below.

X=—ax—ew+ yz

y=by+uaz
Z=cz+ fw—xy (14)
w=dw-—gz

Where x, y, z and w are the state variables and a, b, ¢, d,
e, fand g are the constant numbers. 3. Cang ef al. m [17]
showed that the nonlinear system (14) can generate
four-wing hyper chactic attractors and also has five
equilibrium pomts where one of them 1s the origin
and other equilibrium points symmetrically
situated with respect to y-axis. In Fig. 1, the state

are

trajectory of the
when 1t orniginates from two different mitial
conditions (1,1,1,1) (shown as solid line) and (1,-1,1,1)
(shown as dashed line). The constant parameters are
selectedas a=50,5=-55¢=10,d=02,e=10,f=16
and g = 0.5.

system are illustrate in 2-D view

Numerical Examples for The 4-D System: Consider the
drive be
respectively as follows

and response system dynamics given

X =—ax —ew + 1
n=by+x5 1)
L =cn+ -y
Wy = dw — gz
and
.7(-52 = *&Xz — éWz + yzzz + Hl
Yo =byy + xpzy +uy
2= iyt oy —myyy g (16)
Wy = dwy — §24 + 1ty

are the estimations of
the unknown parameters a, b, ¢, d, e, f and g
respectively. Also, #,, w,, u, and u, are the nput
control variables. Note that, according to (1) and (2)
we can define.

Where 355467 and &
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Fig. 1. Four-wing hyper-chactic attractor of 4-D system (14) in 2-D view for two initial conditions, solid line (1,1, 1, 1)

and dashed line (1, -1, 1, 1).
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Fig. 2: Errors of the synchronization between 4-D systems, a) el, b) e,, ¢) e; and d) e,
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Then, noting to the theorem and (6), in order to synchronize (16) with (15), the control action, u(z), is
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Fig. 4: Estimation of unknown parameters for the 4-D system
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=307 — Yoz +alxy —x)+elwy —w)—e
uz:x121—x222+b(3’1_J’2)_32m (19)
Hy = =M T Ay T E(2) =2y )+ Flw —wy ) — e

g = g(wl —wy )+ glzy—2)— ey

Where e, =x,—x,, &,= vy, &, = 2, — z; and e, = w, —w, and also, K = diag[2.5 2.5 2.5 2.5]. In addition, according to (7),

the updating laws are

4=x9

5:*M%

é=—z1e3

P 0
e=we

f =—wes

g=ze¢

In our simulation, the mitial condition of the drive system 1s (1, 1, 1, 1) while the response system starts with
(0.8, 09, 1.3, 0.9). Moreover, the constant parameters of the drive systemare a=5056=-55,¢=10,d=02,e=10, f=
16 and g = 0.5. You can see the results in Fig. 2 to 4.

Fig. 2. illustrates the errors of the synchronization with respect to time. The mput controls and the parameter
estimations are also illustrated m Fig. 3. and 4. Moreover, the mitial conditions for the adaptation laws are chosen
as @0 =501 poy=—5 E(0)=996, F(0)=-0.114, E0)=1034, F)=15.64 and =014

The simulations in this paper 1s run using runge-kutta method with step size 0.001.

Second Example: A new 3-D autonomous chaos system that was reported in [18] is described as follows
X=—ax— ey2
y=by—ke )
Z=—0Z+ mxy
Where x, y, 7 are the state variables and a, b, ¢, e, k and m are the constant parameters. This chaotic system has a strong
chaotic attractor whena=15=2.5,¢=5,¢ =1, k=4 and m = 4 similar to the Lorenz system but not equivalent such that

this 18 a transverse butterfly-shaped attractor [18] (Fig. 5). Domg some computations, it can be shown that chaotic
system (21) has five equilibrium points which are

(0,0,0), (x1.25,+1.118,—0.559),(x1.25,71.118,0.559) (22)
Moreover, it is shown in [18] that all equilibrium points are unstable saddle focus-nodes.

Numerical Example for the First 3-D System: In this example, the drive and response system dynamics be respectively

glven as

X =—ax ey
} 23
n=by—kxz (23)

= —cn + MmN
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Fig. 5. Transverse butterfly-attractive of system (14) in 3-D view

fy = =iy — &y + (D)
o =byy —kxyzy +uy(7)

(24)
Zy = —Czy + WXy Yy +u3(1)

Where 4 66,6, and # are estimations of a, b, ¢, e, k and m respectively. In this example it is assumed that the
unknown parameters of the drive systemare =1, =25, c=5,e=1,k=4andm=4. Also, the initial condition of
the drive system is (0.2, 0, 0.5) while the response system starts with (0.15, 0.02, 0.49). With respect to (1) and (2) we
can define

x5 0 0 -y 0o 0
FN=0, Fix(t)=| 0 3 0 0 -xz 0 La=[a b ¢ e k m|
0O 0 -z 0 0 qmM

and
—x, 0 0 —yi 0 0
FON=0, F(y)=| 0 y, 0 0 -xy2, O ,o“c:[.& b ¢ & k ﬁgf
0 0 -z O 0 Xg)g

Where x = [x, y, z;]" and y = [x, y, z,]". So, with respect to the theorem and from (6) and (7) and if we select

2 0 0
K=|0 06 0 (25)
0 0 1

then the adaptive controls and the updating laws are designed respectively as follows

(1) = (@~ + (31 + y7)é
1y (1) = —(b + Dy + (—x2) + %329 )

(26)
u3(1)=(&—Deg + (g1 — Xp ¥
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Where e, = x, —x,, e, =y, — y, and e, = z, — z,. In this simulation, the initial conditions of the adaptation parameters are
chosen as @0)=09. 50)=2.4 ¢&0)=53, é0)=1, k©0)=4.1 and "0)=3.8  The simulation results are shown in Fig. 6. to 8.
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Fig. 8: Estimation of unknown parameters in slave system in the first example

Fig. 9: Transverse butterfly-attractive of system (16) in 3-D view

Third Example: Another novel 3-D chaos system that we want to study has been introduced by C. Liu in [19]. The
dynamic equation of this chaotic system is given by the following equations

X=a(y—-x+yz)
y=by—hxz

i=hky-gz (28)

Where x, y, z are the state variables and a, b, 4, g and k are constant parameters. The behavior of the nonlinear system
in (16) represents a transverse butterfly-shaped chaotic attractor [19] as shown in Fig. 9. whena=1,b6=25k=1,g=
4 and 4 =1 and the initial condition is (0.04, 0.2, 0). Also this chaotic system has three equilibrium points at

(0,0,0), (10,-8.633,—2.158),(10,4.633,1.158) (29)

Which are unstable saddle focus-nodes.

Numerical example for the second 3-D systems: Here, the synchronization of two identical chaotic systems that are
described by (28) is performed. For this case, the drive and response systems are taken as follows respectively
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Fig. 11: Input controls in the first example, a) u,, b) u, and c) u,

Where a, b, 3 7 and & are the estimations of a, b, g, h and k, respectively. As mentioned before, by choosing a =1, b
=25,k=1,g=4and h = 1 nonlinear system (30) shows the chaotic behavior. Also, we selected the initial
condition of the drive system state as (10, —8.633, — 2.158) while the initial condition of the response system is

Y =a(y—x+n7)
n=by —hxz)
L=k - g

<)

Xy =a(yy =Xy + y22p) + (1)

Ir=byy—hxyz +uy(1)

Zy=kyy— gz +us(0)

(8.9, —7.43333, — 2.158). Here, with respect to (1) and (2), we can define.
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and

Jx(@) =0, F(x(1))=

J@)=0, F(y(1))=

n-x+yz 0 0
0 yl 0
0 0 _Zl

Ya—xy+z; 00
0 y] 0
0 0 —22

0 0
0 X1z |, 0= [a b
w0

0 0
0 —XpZp |, OO = |:5l
v 0

Where x = [x, y, z,]" and y = [x, ¥, z,]". Now, by choosing K as an identity matrix

300
K={0 3 0
0 0 3

100

g k n

S
Qe
Bt

then the adaptive controllers and updating laws are obtained from (6) and (7) respectively as follows

Qe

U3(f) =5€3 - 1282 —e3

=X
b=-ye,
é =Z1e3
< 2
e=Jie
iC’ = X216
I’;."l =—Ne

258

u(t)=ale; —ey + y121 = ¥22p) — ¢

Mz(t) = —562 + ﬁ(—xIZ] + xzzz)— €

S

(32)

(33)

(34)

(35)

(36)



Middle-East J. Sci. Res., 10 (2): 247-259, 2011

Where e, =x, —x, e, =y, —y, and e; = z, — z,. In addition,
the initial conditions for the estimation parameters were
chosenas @0=05 Z5o0y=35, Fo=0, §0=6 and A=-2.
Fig. 10 to 12 illustrate the simulation results of this
example.

As it can be seen in the three examples, we succeed
to achieve fully chaos synchromzation between three
identical even systems.

CONCLUSION

In this note, we proposed a new adaptive control
method to synchronize two identical chaotic systems.
Using Lyapunov stability theory, it is shown that the
proposed adaptive controller with the updating law can
the the

synchronization action asymptotically. In order to verify

guarantee stabilization and  therefore
the proposed method, it was also applied to the three
novel chaotic systems, a 4-D system and the two 3-D
systems that were reported in [17-19]. Fmally, we
represented the simulation results of the numerical

examples.
REFERENCES

1. Pecora, .M. and T.L. Carroll, 1990. Synchronization
m chaotic systems, Phys. Rev. Lett. 64: 821-824.
Wang, ZL. and X R. Shi, 2010. Adaptive Q-3
synchronization of
systems with unknown parameters, Nonlinear Dyn,
59: 559-567.

Bowong, 5., 2007. Adaptive synchronization of
chaotic  systems  with  unknown  bounded
uncertainties via backstepping approach, Nonlinear
Dyn, 49: 59-70.

Roopaei, M., BR. Sahraei and T.C. Lin, 2010.
Adaptive sliding mode control in a novel class of

non-identical  chaotic

chaotic systems, Communications in Nonlinear
Science and Numerical Simulation, 15: 41 58-4170.
Ghosh, D., 2010. Nonlinear active observer-based
generalized synchronization in time-delayed systems,
Nonlinear Dyn, 59: 289-296.

Zhu, C., 2009. Adaptive synchronization of two novel
different hyperchaotic systems with partly uncertain
parameters, Applied Mathematics and Computation,
215: 557-561.

259

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Wu, X, ZH. Guana and 7. Wua, 2008. Adaptive
synchronization between two different hyperchaoctic
systems, Nonlinear Analysis, 68: 1346-1351.

Wu, Y., Y. Wua, X. Zhou, J. Chen and B. Hu, 2009.
Chaos synchronization of a new 3D chaotic system,
Chaos Solitons and Fractals, 42: 1812-1819.

Chen, X. and J. Lu, 2007. Adaptive synchromization
of different chaotic systems with fully unknown
parameters, Physics Letters A, 364: 123-128.

Q1, G., G. Chen, 8. Du, 7. Chen and 7. Yuan, 2005.
Analysis of a new chaotic system,” Physica A Stat.
Mech. Appl., 352: 295-308.

Zhou, X, Y. Wu, Y. Li and Hongquan Xue, 2008.
Adaptive control and synchronization of a novel
hyperchaotic system with uncertain parameters,
Applied Mathematics and Computation, pp: 1-6.
Zhang, H., W. Huang, 7. Wang and T. Chai, 2006.
Adaptive synchronization between two different
chaotic systems with unknown parameters, Physics
Letters A, 350: 363-366.

Yassen, M.T., 2005, Adaptive synchronization of two
different uncertain chaotic systems, Physics Letters
A, 337: 335-341.

Li, 5., W. Xuand R. L1, 2007. Synchronization of two
different chactic systems with unknown parameters,
Physics Letters A, 361: 98-102.

Xu, W., XL. Yang and Z.K. Sun, 2008. Full-and
reduced-order synchronmization of a class of time-
varying systems containing uncertainties, Nonlinear
Dyn, 52: 19-25.

Zhang, G., Z. Liu and J. Zhang, 2008. Adaptive
synchronization of a class of continuous chaotic
systems with uncertain parameters, Physics Letters
A, 372: 447-450.

Cang, 3., G. Qiand Z. Chen, 2010. A four-wing hyper-
chaotic attractor and transient chaos generated from
a new 4-D quadratic autonomous system, Nonlinear
Dyn, 59: 515-527.

Liu, C., L. Liu and T. Liu, 2009. A novel three-
dimensional autonomous chaos system, Chaos
Solitons and Fractals, 39: 1950-1958.

Liu, C., 2009. A novel chaotic attractor, Chaos
Selitens and Fractals, 39: 1037-1045.

Khalil, H., 1996. Nonlinear systems, Prentice Hall,
2nd edn.



