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Abstract: Most fungi to which we are regularly exposed through the air or because they are part of our normal
microbiota do not usually cause disease in immunocompetent individuals. However, some fungi rarely become
pathogenic if host defenses breached or compromised with symptoms ranging from mild superficial infections
to severe systemic diseases that are associated with a high degree of morbidity and mortality. Protective
immunity against fungal pathogens achieved by the integration of two distinct arms of the immune system, the
innate and adaptive responses. Innate and adaptive immune responses intimately linked and controlled by sets
of molecules and receptors that act to generate the most effective form of immunity for protection against fungal
pathogens. The way to respond primarily determined by interactions between pathogens and cells of the
immune system of the host, but the actions of T cells will feedback into this dynamic equilibrium to regulate the
balance between tolerogenic and inflammatory responses. However, the host responses against different fungal
infections are as diverse and distinct as the different fungal diseases themselves. Clinical and basic research
during the last decade has brought exciting new insights into the pathogenesis of fungi and revealed important
molecular and cellular players in host-fungal interactions and host defense. However, commensal and normally
non-pathogenic environmental fungi can cause life-threatening infections in immunocompromised individuals.
Therefore, the objective of this review is to insight the mammalian immune responses against fungi infections.
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INTRODUCTION individuals [2]. However, immunocompromised

Fungi tend to be either unicellular (yeast-like) sometimes  go  on to become persistent. Invasion of
spherical, such as Candida species, or multicellular and blood  vessels  by  a  growing fungus chokes off the
filamentous, like Aspergillus. Some fungi live blood supply to the host tissue, damaging or killing it [2].
commensally on the topologically external  surfaces of The exceptions are the dermatophytes, filamentous fungi
the body, while others live most of their lives in the  soil that infect the skin, hair and nails [2]. These organisms,
as a mass  (mycelium)  of thread-like processes (hyphae). which include species of Epidermophyton, Microsporum
Dimorphic fungi adopt a yeast-like form at one stage in and Trichophyton, cannot penetrate the living, cellular
their  life  cycle  and a hyphal form at another stage. tissue of a healthy host and so are restricted to parts of
Fungal cells have a cell wall like bacteria but also cell the body that lack living cells, such as the keratinized
membrane-like mammalian cells [1]. However, the fungal outer layer of skin. Important fungal pathogens are
cell wall lacks the peptidoglycans, teichoic acids and Blastomyces dermatitidis, Histoplasma capsulatum,
lipopolysaccharide components  of  the  bacterial  wall Candida species, Aspergillus species, Cryptococcus
and the main component of the fungal cell membrane is neoformans and Pneumocystis carinii [1]. Blastomycosis
ergosterol rather than the cholesterol found in mammalian occurs    when    conidia     of     the  yeast-like   fungus
cell membranes. B.    dermatitidis     inhaled     through     the   aerosol.

The correlation between the incidence of fungal This organism replicates extracellularly to cause a
infection and clinical fungal-related disease has risen pulmonary  infection that spreads through the blood to
dramatically in the last two decades, which would suggest the skin, bones   and   male   urogenital   tract,   but   not
an increasing pool of susceptible, immunocompromised  the  gut. In contrast, H. capsulatum is an intracellularly

individuals can suffer from acute infections that
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replicating yeast-like fungus that causes histoplasmosis. innate first-line defense, which latterly strengthened by a
Inhaled microconidia develop into Histoplasma that take second-tier, adaptive response.
up residence  preferentially  in  local  respiratory Decades ago, fungal immunology research largely
macrophages [2]. focused on defining the molecular interactions between

A progressive pulmonary disease resembling pathogen-associated molecular patterns (PAMPs) and
tuberculosis can spread to the secondary lymphoid their cognate pattern recognition receptors (PRRs) and
organs, mucosae, gut and adrenal glands. Candida was beginning to understand how immune cells could
species such as C. albicans and C. tropicalis lurk in the interact with fungi as some of the molecules involved in
normal flora at the mucosae (but not in the skin) and fungal recognition were discovered. Dendritic cells (DCs)
cause  disease  only  if these mucosal barriers are broken found to act at different levels in the immune response
or compromised [1]. A deficiency of neutrophils in the against fungi [4]. They are not only able to mount an
host  (neutropenia)  leaves  the  host  especially immediate innate immune response by producing
vulnerable to candidiasis. Such Candida infections are inflammatory mediators; they could also influence
usually superficial in nature (such as vaginitis and subsequent adaptive immune responses, including
cystitis) but can progress to infections of the eye, skin tolerance to commensal organisms. In fact, fungi are
and brain [3]. associated with an extensive variety of diseases in

Inhalation of spores of Aspergillus species causes a mammals, ranging from cutaneous lesions and acute self-
variety of diseases and can induce allergic responses. limiting pulmonary manifestations in immunocompetent
Conidia  of  three  species,  A.  fumigatus,  A. flavus  and individuals to inflammatory diseases and severe life-
A. niger, are particularly pathogenic for humans, causing threating infections in immunocompromised patients [7].
invasive pulmonary infections that can be fatal if allowed Therefore, the objective of this review is to insight the
to entrench [2, 3]. Aspergillus species also produce mammalian immune responses against fungi infections. 
mycotoxins that damage hepatocytes, macrophages and
CTLs. C. neoformans is a yeast-like fungus often present Evasion Strategies: Invasive fungal infections caused by
in pigeon droppings. When a host inhales Candida species or Aspergillus fumigatus and other
unencapsulated spores of Cryptococcus, the parasite filamentous moulds are devastating in immune
enters the lung and synthesizes a protective capsule that compromised patients [7]. Many fungi adopt different
inhibits phagocytosis. If the infection becomes forms at different stages in their life cycles, making
established, the result may be cryptococcosis, a immune defense necessarily more complex. The structure
syndrome of pulmonary infection accompanied by of  the  fungal  cell  wall  and  membrane   means  that
meningitis [3, 4]. fungi  generally  can  avoid  complement-mediated lysis.

The mechanistic aspects of immune responses In addition, many fungi have developed strategies to
(innate or adaptive) vary depending on the fungal species offset the effector actions of neutrophils, macrophages,
encountered [5] the target organism and the site of CTLs and NK cells [8]. If fungal pathogens overcome the
infection. Survival within phagocytes from where fungi initial epithelial barrier and (start to) invade the host
can later disperse throughout their host is one particular tissue, they may get in contact with immune cells in the
elegant strategy [1, 6]. To maintain a stable host-fungi tissue and/or depending on the route and degree of
interaction,  the  immune  response    segregated    into  an invasion in the circulation [8].

Table: Fungal mechanisms to evade the host immune 
Immune system element thwarted Fungal mechanisms
PPR recognition Have no LPS or peptide glycan in cell wall
Specificity of T and B cells Have a multi stage life cycle
Complement Block access to the cell membrane via cell wall
Phagocytosis Block phagocytosis via polysaccharide capsule
T and B cell function Induce immune deviation to Th2
Block NF-KB activation Increase NO production to decrease lymphocyte proliferation 

Block phagocytosis
Inhibit neutrophils migration 
Decrease IL-12 and B7 expression by monocytes 
Activate regulatory T- cell via polysaccharide capsule component
Produce melanin to decrease Th1 and Th2 responses
Block TNF production
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Innate Immunity: Any invader that breaches the physical composition and conformation exist between different
barrier of skin or mucosa greeted by the innate immune fungal species [24]. -1, 3-glucan, which is usually hidden
system; second line of defense. Immunologists refer this by other carbohydrates, is one of the most potent fungal
system asinnate, which is a defense mechanism that all PAMPs. The sequestration of -1, 3-glucan by less
mammalians naturally seem to have. The innate immune immune-stimulatory cell wall components evolved as a
system has evolved to sense conserved microbial potent immune evasion strategy in  many  pathogenic
structures, so-called pathogen- associated molecular fungi [25-29].
patterns (PAMPs) via germline-encoded PRRs. Ligand
binding by PRRs induces the activation of signaling C-Type Lectin Receptors (CLR): The main PRRs involved
cascades inside the cell that leads to gene expression in in  fungal  recognition  belong  to  the  family of myeloid
the nucleus. The production of cytokines, chemokines, C-type lectin receptors (CLRs) that are highly expressed
complement units and antimicrobial factors by innate by dendritic cells (DCs), neutrophils and macrophages.
immune cells results in the activation and recruitment of CLRs  are  classified  by  the  presence of one or several
effector cells to the site of infection and in the elimination C-type lectin-like domains (CTLDs), many of which bind
of pathogens, respectively [7]. Innate immune cells to carbohydrates such as those in the fungal cell wall [30].
including neutrophils, monocytes/macrophages and The family of CLRs encompasses soluble molecules such
dendritic cells rapidly detect the presence of fungi and as the mannose-binding protein (MBP) or surfactant
induce an antimicrobial response. Neutrophils, protein D that activate the complement cascade,
macrophages and DCs are all critical to the antifungal endocytic receptors that internalize their ligands such as
response [9-11]. The release of inflammatory cytokines, as the mannose receptor (MR) and signaling receptors that
well as reactive oxygen intermediates and antimicrobial act as bona fide PRRs to initiate innate and adaptive
peptides,  can  then  clear  the  fungi   in   target  organs immunity, while others have immunomodulatory activities
[6].  Fungal recognition is mediated by a variety of [30-32]. The prototypic signaling CLR is dectin-1. It binds
surface-bound and soluble pattern recognition receptors to -(1, 3)-glucans in the fungal cell wall. Dectin-1
(PRRs) recognizing fungal cell wall components and contains an ITAM-like motif, also called hemITAM, in its
nucleic acids including Toll like receptors (TLRs), C-type cytoplasmic domain [33-36]. Selective signaling via dectin-
lectins (Dectin-1, Dectin-2, Mincle, dendritic cell-specific 1 results in the induction of high levels of TNF, IL-6 and
intercellular adhesion molecule-3-grabbing non-integrin, IL-23, but little IL-12 and is thus qualitatively distinct from
mannose-binding lectin 2 (MBL2) and long pentraxin 3 TLR- mediated signaling [37]. Dectin-1 signaling can also
(PTX3)) [12-22]. engage phospholipase C 2 (PLC 2)-dependent nuclear

PRRs  in  Fungal  Recognition:  PRRs  are  the  first line the production of IL-2 and IL-10 [38]. Moreover, dectin-1
of  defence   in  antifungal  immunity. Upon  recognition signaling leads to the induction of IL-1  via the activation
of  surface-expressed   PAMPs   such   as -glucan and of caspase-1, which mediates cleavage of pro- IL- 1  into

-mannan, CLRs initiate inflammatory innate responses mature IL-1  [39, 40]. Dectin-1  signaling  was  implicated
that in turn polarize a Th17 adaptive immune response, in the response to many pathogenic fungi and its host-
which is generally beneficial to fungal control and protective  role  was  demonstrated  in  mouse  models
clearance [23]. The primary fungal PAMPs recognized by with C. albicans [41], A. fumigatus [42-44] and
the innate immune system of the host are components of Pneumocystis [45-47]. Dectin-2 and mincle are two
the cell wall. The fungal cell wall is composed of skeletal additional Syk-coupled    CLRs   that   recognize  fungal
and matrix components, which resemble mesh and mortar -mannan structures [48]. Unlike dectin-1, they lack the
in concrete buildings [23]. The skeletal structures at the hemiTAM motif in their cytoplasmic tail. Instead, they
base of the cell wall consist of chitin, which is a -(1, 4)- assemble with FcR , an ITAM-containing adaptor for
linked  polymer  of  N-acetylglucosamine and -1, 3- and signaling [49]. In addition, dectin-2 and mincle have

-1, 6-glucans that are stabilized by intermolecular recently been shown to associate with MCL (also called
hydrogen bonds. The fungal cell wall matrix is composed dectin-3) for enhanced ligand binding [50-53].
of mannoproteins, namely, heavily glycosylated proteins
with mannose-containing polysaccharides (mannans). Mannose-Binding  Lectin:  The  mannose receptor (MR)
These mannoproteins attached to -1, 3-glucans or chitin is a PRR primarily present on the surface of macrophages
by a linker structure. Important differences in cell wall and dendritic cells and thus there are 2 MLB isomers in

factor of activated T cell (NFAT) activation, resulting in
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the mouse; MBL1 and MBL2, while humans only have assembly of a canonical inflammasome composed of the
MBL2. Mannose-binding lectin (MBL) is a soluble lectin NOD-like receptor NLRP3 and ASC to provide a scaffold
belonging to the collectin family and consists of a CRD for caspase-1 activation. The importance of the NLRP3
that is attached to a collagen region via -helical coil inflammasome in antifungal immunity was demonstrated
domain [4]. It is produced by the liver and secreted into in NLRP3-deficient mice, which display an increased
the blood, where, after binding to microbial carbohydrate susceptibility to systemic and superficial candidiasis [64].
surfaces, it can activate the lectin pathway of the Activation of the NLRP3 inflammasome by C. albicans
complement cascade, enhancing the phagocytosis of depends on yeast-to-hyphal transition, which may reflect
microorganisms and modulating inflammatory responses the dependence on -glucan exposure at the fungal cell
[54-57]. surface [65-67] and the secretion of secreted aspartyl

Toll-Like Receptors (TLRs): Ligands and Cellular be processed by neutrophil-derived proteinase-3 [68] and
Responses Intensive research in this area in the last few by C. albicans- derived aspartyl proteases [69-70]. IL-1
years has identified several fungal PAMPs recognized by is closely related to IL-1 , which signals through the same
TLRs; however, the primary structures of the fungal receptor. IL-1  also depends on processing for becoming
ligands have not yet been fully resolved. Some studies bioactive, but it is not a substrate of caspase- 1 [63].
have suggested that mannosylated structures derived However, the NLRP3 inflammasome and caspase-1 is
from Candida, Cryptococcus and Scedosporium can implicated indirectly in the secretion of IL-1  [71] by
directly interact with specific TLRs, including TLR1, catalysing the processing of IL-1 , which was proposed
TLR2, TLR4 and TLR6, triggering inflammatory responses to bind to intracellular IL-1a and to serve as a shuttle for
[58]. Besides CLRs, certain TLRs are also implicated in IL-1  release [72]. Cell surface-bound IL-1  can be
fungal recognition, including TLR2, TLR4, TLR7 and cleaved by calpain I and II at the cell membrane and
TLR9. The family of TLRs is the best-characterized family secreted pro-IL-1  can be processed by extracellular
of PRRs. TLRs is membrane-bound receptors composed proteases [73]. IL-1 , which is constitutively expressed in
of leucine-rich repeats for ligand recognition and a some cells such as keratinocytes, is also released upon
conserved Toll/IL-1R-domain in the cytoplasmic domain. cytolytic cell death. In addition that caspase-1 has a
The latter mediates signaling via MyD88 (and/or TRIF in critical function in the processing of IL-1 ; caspase- 1
some cases) to couple to NF-êB activation (or IRF activation can also induce pyroptosis, an inflammatory
activation in case of TRIF-mediated signaling) and the form of programmed cell death [74]. Pyroptosis results in
induction of pro-inflammatory target genes. TLR2 and DNA fragmentation and chromatin condensation.
TLR4 are expressed at the cell surface, where they However, in contrast to apoptosis, which is a non-lytic
recognize fungal phospholipomannan and O-mannan mechanism, pyroptosis involves cell swelling, pore-
structures, respectively [59, 60]. The endosomal TLRs mediated lysis and release of intracellular components,
TLR7 and TLR9 have also been implicated in fungal which usually are not exposed to the extracellular
recognition, namely, in sensing of nucleic acids and compartment,  including  cytoplasmic cytokines such as
induction of IL-12 and/or type I interferons in response to IL-1 and IL-1  ATP, HMGB1 and nucleic acids. Due to
C. neoformans, A. fumigatus and C. albicans [61]. their inflammatory properties when released in the
Moreover, TLRs contribute to antifungal immunity by extracellular environment, these molecules were also
modulating the response induced by other PRRs [62]. called damage-associated molecular patterns (DAMPs)

Inflammasome Activation by Fungal Pathogens: Besides identified that promote inflammatory responses.
other cytokines and chemokines, many fungal pathogens
induce the production of IL-1 . Biosynthesis of bioactive Roles of Defensins in Fungal Innate Immunity: They are
IL-1  requires two independent signals. The first cationic, microbicide peptides active against many Gram-
regulates transcription and translation of pro-IL-1  and negative and Gram-positive bacteria, fungi and enveloped
the second induces the proteolytic cleavage of pro-IL-1 viruses composed of three pairs of intermolecular
into the active IL-1 [63]. Fungi trigger both steps of IL-1 disulphide bonds which are classified in to alpha, beta
synthesis. Importantly they induce proteolytic cleavage and theta [76]. Defensin exist in the mammalian white
by caspase-1 via the assembly of Inflammasome with blood cells such as macrophages, granulocytes, NK cells
distinct subunit composition. C. albicans stimulates the and only beta defensins are located in the epithelial cell

proteinase (SAP) 2 and SAP6 [68]. In addition, IL-1  can

[75] that for some of them, cellular receptors were
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[77].  They   interact  with  the  membrane of invading Fungi also express analogues of complement receptors
fungi microbes that are negative due to that facilitate adherence to host cells and may also
lipopolysaccharide and acid encapsulated by the cell promote phagocytosis. Pro-inflammatory cytokines
membrane that the peptides have higher affinity to the induced by products of complement activation also
binding site compared to Ca2+ and Mg2+ ions. Therefore, contribute to anti-fungal defense [8]. Complement
the peptides exchange place with those ions, thus activation plays a central role during bloodstream
affecting  the  stability  of  the membrane by passing infections [87]. Fungal pathogens rapidly activate the
across the membrane due to changes in the electric complement via multiple pathways including the
potential and aggregate in to dimers [78]. Finally pore alternative complement pathway [88]. Rapid activation of
complex will be created as a result of breaking the the C3 convertase leads to C. albicans opsonization by
hydrogen bonds between the amino acids in the terminal C3b binding to -(1, 6)-glucan [89], which facilitates
end of the strands connecting defensins monomers phagocytosis by neutrophils in a CR3-dependent manner
causing membrane depolarization and cell lysis [79]. [90]. Importantly, complement activation also results in
Defensins not only have the ability to strengthen the the induction of anaphylatoxins C3a and C5a with
innate  immune  system  but can also enhance the important immune stimulatory activities, in particular on
adaptive  immune  system by chemo taxis of monocytes, neutrophils and monocytes, which are abundant in the
T-lymphocytes, dendritic cells and mast cells to the circulation and they can act as chemo attractants for these
infection site that improves the capacity of macrophage cells in tissues [90].
phagocytosis [80]. 

Adaptive Antifungal Mechanisms can induce several cellular responses, including
Humoral Defense: Other than the secretory IgA that phagocytosis, respiratory burst and chemokine and
defends the mucosae, antibodies are thought to cytokine production [1]. Cell-mediated innate immunity is
contribute in only a limited way to defense against fungi. the primary means by which fungi infections are
Antibody-mediated opsonisation may promote controlled. Neutrophils and macrophages both carry out
phagocytosis and thus  contribute  to  the  presentation vigorous phagocytosis and produce powerful anti-fungal
of  fungal antigens that activates Th1 cells [81]. defensins. These defensins induce an osmotic imbalance
Antibody-mediated  immunity  is generally thought to in pathogens such as Candida and Cryptococcus that kills
play a minor role for natural protection from fungal them. Neutrophils and macrophages also secrete copious
infections. Although antibodies are generated in response quantities of IL-1, IL-12 and TNF. IL-12 stimulation
to commensal or environmental fungi and can be detected activates NK cells that contribute to fungal cell killing via
in the serum, their specificities are not usually protective cytokine secretion (rather than natural cytotoxicity) [2].
to  the  host  [81].  More  recently,  it has become clear IFN produced first by activated NK cells and later by
that depending on the specificity and isotype, certain activated Th1 cells also hyper activates macrophages,
antibodies   can   modulate  the course of fungal which can initiate granuloma formation. Interestingly, a
infections  and  thereby benefit or harm the host [82]. fungus present in its unicellular yeast-like form tends to
Antibody- mediated immunity is now viewed as a provoke a protective Th1 response, whereas its hyphal
promising therapeutic approach against fungal infections form tends to induce a non-protective Th2 response.
and  several  protective antibodies to fungi have now There is some evidence that either distinct subsets of
been developed [82, 83]. Anti-cell wall mannoprotein DCs, or distinct receptors on DCs, respond to the two
antibodies  can  block  adhesion  of C. albicans [84, 85]. different fungal morphologies [1]. These DCs then
In contrast, antibodies directed against C. neoformans proceed with phagocytosis and antigen processing and
glucuronoxylomannan (GXM) protect via enhancing presentation and influencing Th1/Th2 differentiation in
cellular immunity including phagocytosis and antibody- the direction best suited to eliminate the particular form of
mediated cellular cytotoxicity [82, 83, 86]. the fungus present. The Th1 response induced by

Complement: While fungal cells can activate the mucosal fungal flora that have a yeast-like form, is
complement cascade, they are generally resistant to mediated by cells producing copious quantities of IL-2
complement-mediated lysis. However, they are subject to and IFN [2]. Th2 responses are comparatively rare during
phagocytosis when opsonised by complement products. infections with yeast-like fungi.

Cell Mediated Immunity: After ligand binding, dectin-1

exposure to airborne fungal spores, or invasion by skin or
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Antigenic Specificity of Antifungal CD4+  T  Cells: T particles containing Cryptococcus alkaline extracts
cells carry antigen receptors that recognize antigenic canprotect mice against cryptococcosis due to the
peptides presented in the context of MHC class II induction  of   robust   Th1   and   Th17  immunity  [101].
molecules on antigen-presenting cells. Each T cell carries In recent researches there are more than two subunit
antigen receptors of a different specificity and thereby the vaccines containing recombinant C. Albicans derived
overall T cell population displays thereby a nearly proteins found to confer immunogenicity in phase I
unlimited diversity of different antigenic specificities [91]. clinical trials as the most promising candidates for a
The T cell repertoire is generated through somatic human vaccine [102]. Finally, due to the similarity between
recombination of germline-encoded gene segments. fungal and mammalian cells significantly complicating
Antigen recognition by CD4+ T cells is limited to peptide drug development and therapeutic approaches to combat
antigens that are  presented  in  the  context  of  MHC fungal disease. However, advances in our understanding
class II molecules [91]. To become fully functional, naïve of the interplay between fungi and the host have led to
T cells require stimulation by cognate antigen-MHC-II the exploration and design of innovative
complexes  that  are  presented by antigen-presenting immunotherapeutic approaches. Initial therapeutic
cells to induce their activation and clonal expansion, strategies were only focused on the use of recombinant
which precedes their differentiation into effector T cells cytokines and Monoclonal antibodies have been recently
[86, 90]. Only a few fungal  T  cell  epitopes  were evolved [97].
identified to date. These include the C. albicans-derived
pALS3236-253 and pADH126-140 epitopes, which are CONCLUSION
functionally conserved in diverse non-albicans species of
Candida [91-95]. Different aspects of the innate and adaptive immune

Immunization and TreatmentAgainst Fungal Infections: Furthermore, novel analytic techniques capable of
Currently, there are no proven fungal vaccines available detecting immune responses elicited by fungi have
in clinical practice due to several challenges. Among proven  to  be  a  promising  area  of scientific research.
several challenges in the development of working fungal The pool of immunocompromised individuals is rapidly
vaccines, most of immune-compromised individuals expanding, indicating that there would  be  an  urgent
(vulnerable groups) are unable to mount effective and need to develop novel and more potent antifungal drugs.
strong immune response [96]. Additionally, the complexity This option would be especially relevant for
of the eukaryotic fungal cells with a double layer of immunocompromised hosts, although the safety and
protection with inner layer of plasma membrane and outer efficacy of novel antifungal remain questionable. A better
layer of cell wall similar as mammalian cells caused major understanding of the role of the host-pathogen
setback in the development of any vaccine or therapeutic interaction will lead to further development of potential
drugs [97]. However, there are some exciting studies in novel antifungal therapies.
recent years using fungal components of the cell wall and
plasma membrane make theoretically possible to develop REFERENCES
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