Iranica Journal of Energy & Environment Research Note Journal Homepage: www.ijee.net IJEE an official peer review journal of Babol Noshirvani University of Technology, ISSN:2079-2115 # NaI (Tl) Spectrometry to Natural Radioactivity Measurements of Soil Samples in Najaf City B. A. Almayahi* Department of Environment, College of Science, University of Kufa, Iraq School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia PAPER INFO Paper history: Received 10 March 2015 Accepted in revised form 3 May 2015 Keywords: Gamma spectrometry NaI (Tl) Environmental radioactivity Radiological hazard #### ABSTRACT This study conducted using a NaI (Tl) gamma-ray spectrometer for the assessment of naturally radioactive materials. This apparatus is devoted to the quantitative and qualitative determination of U, Th, and K in soil samples collected from the city of Najaf, Iraq. The average of concentrations in the surveyed soil samples were ranged from 55 to 102 Bq kg $^{-1}$, ND to 448 Bq kg $^{-1}$ and 79 to 1887 Bq kg $^{-1}$ for 238 U, 232 Th, and 40 K, respectively. To assess the radiological hazard of radioactivity in the soil samples, the radium equivalent activity, annual effective dose, external hazard, and internal indices were calculated. The Ra $_{\rm eq}$ values of soil samples were lower than 370 Bq kg $^{-1}$ recommended maximum levels of radium equivalents in soil. doi: 10.5829/idosi.ijee.2015.06.03.08 ## INTRODUCTION The Gamma-ray spectrometer method for the determination of naturally radioactive materials is big interest in environmental and Earth's sciences [1-13]. There are a number of possible applications spanning from ore exploration to environmental radiation monitoring problems, most of them involving the determination of the U, Th, and K amount in soil and rocks [14]. These elements may be used as tracers also in non-radioactive processes producing Para genesis associated with naturally occurring radioactive materials (NORMs) [15]. The main objective of this study was to identify determine natural radionuclide concentrations in soil samples collected from Najaf city. # MATERIALS AND METHODS Eleven soil samples are collected from Najaf city as shown in Fig. 1. These regions are Alansar-Najaf (7 samples), Alfateh-Hurya (3 samples), and Alrashadia-Kufa (1 sample). *Corresponding author: B. A. Almayahi E-mail: basimnajaf@yahoo.com; basim.almayahi@uokufa.edu.iq Figure. 1. The administrative Najaf city map with sampling sites The samples were dried, homogenized, and weighted. Each sample (1 kg) was sealed in Marinelli beaker. Gamma spectroscopic measurements using a NaI (Tl) scintillation detector (1.76" × 1.56") and a leybold cassy lab multichannel analyzer (Pocket-CASSY 524058) were performed. The detector is surrounded by a lead shielding in 5 cm thickness. A Please cite this article as: B. A. Almayahi, 2015. Nal (Tl) Spectrometry to Natural Radioactivity Measurements of Soil Samples in Najaf City, Iranica Journal of Energy and Environment 6 (3): 207-211. constant counting time for calibration sources (60Co, ¹³⁷Cs, ²²Na, ²⁴¹Am, and ²²⁶Ra) from the International Atomic Energy Agency, for the background spectrum, and for measuring soil of 3600 s was adopted. Instrument calibration was done at multiple energies from 25 to 2500 keV. The natural radioactivity of soil samples is usually determined from the ²³⁸U, ²³²Th, and ⁴⁰K contents. It is worth to mention that about 98.5% of the radiological effects of ²³⁸U are produced by radium and its daughter products. The contribution from the $^{238}\mathrm{U}$ and the daughter $^{226}\mathrm{Ra}$ precursors are ignored. The naturally occurring radionuclides of relevance for the present work are mainly gamma ray emitting nuclei of 238 U, 232 Th, and 40 K. Activity concentration of 40 K can be measured directly by its own gamma ray at 1461 keV, whereas, activity of ²³⁸U and ²³²Th were calculated based on the average activities of their respective decay products (Table 1) [10, 16, 17]. The specific activity is defined as follows [18, 19]: Specific activity $$(Bq \ kg^{-1}) = \frac{Net \ Area - B.G}{teP_{\nu}M}$$ (1) where Net Area= Net area under energy peak (count). B.G = the number of counts for the background spectrum, ε = the absolute efficiency of the detector, P_{ϵ} is the gamma-ray emission probability, and M = theweight of the dried sample (kg). # Radiological hazard index Radium equivalent activity (Ra_{eq}) The significance of 226 Ra, 232 Th, and 40 K concentrations was defined in terms of radium equivalent activity in Bq kg⁻¹. Ra_{eq} was calculated from the following equation [20]: $$Ra_{eq} = C_{Ra} + 1.43C_{Th} + 0.077C_{K}$$ (2) where C_{Ra} , C_{Th} and C_{K} are the activity concentrations of ^{226}Ra , ^{232}Th , and ^{40}K in Bq kg⁻¹, respectively. This equation is based on the estimate that 1 Bq kg⁻¹ of ²²⁶Ra, 0.7 Bq kg⁻¹ of ²³²Th, and 13 Bq kg⁻¹ of ⁴⁰K generate the same gamma-ray dose rate [21]. The maximum value of Ra_{eq} must be less than 370 Bq kg⁻¹ for safe use as recommended by the Organization for Economic Cooperation and Development [22]. #### Air-Absorbed Dose Rates The absorbed dose rates in outdoor air (D_R), at about 1 m above the ground surface were calculated. The conversion factors used to compute absorbed gammaray dose rate in air corresponds to 0.46 nGy h⁻¹ for ²²⁶Ra, 0.62 Gy h⁻¹ for ²³²Th, and 0.042 nGy h⁻¹ for ⁴⁰K. Therefore, D can be calculated according to literature [14] using the following equation $$D_R (nGy h^{-1}) = 0.46 C_{Ra} + 0.62 C_{Th} + 0.042 C_K$$ (3) #### Annual outdoor effective dose equivalent To estimate the annual outdoor effective doses (ED), the conversion coefficient from absorbed dose rate in air to effective dose (0.7 Sv Gy⁻¹) and the outdoor occupancy factor (0.2) are used [14]. The effective dose equivalent rate is calculated from the following equation [20]. ED (mSv y⁻¹)= $$D_R$$ x 8766 h y⁻¹x 0.7 (Sv Gy⁻¹) x 0.2 x 10⁻³ (4) External hazard index (H_{ex}) Radiation exposure due to ²²⁶Ra, ²³²Th and ⁴⁰K may be external. This hazard, defined in terms of external or outdoor radiation hazard index and denoted by H_{ex} , can be calculated using the following equation [20]: $$H_{ex} = C_{Ra}/370 + C_{Th}/259 + C_K/4810 \le 1$$ (5) #### Internal hazard index (H_{in}) Internal hazard index (H_{in}) is given by the following equation [20]: $$H_{in} = C_{Ra}/185 + C_{Th}/259 + C_K/4810 \le 1$$ (6) H_{in} must be less than one for safe use of samples and for the radiation hazard to be negligible. #### RESULTS AND DISCUSSION Activity levels of ²³⁸U, ²³²Th, and ⁴⁰K of the various soil samples were determined as shown in Table (2). Soil 238U, 232Th, and 40K in the study area were found to be 69.78 ± 0.53 , 125.63 ± 0.47 , and 1165.29 ± 0.45 Bq kg⁻¹, respectively. From Table 2, the higher 238 U and 232 Th concentrations in soil samples are noted in site ANS2 and site FAT3, respectively. The high ⁴⁰K concentration was noted in site ANS6. Whereas, the low ²³⁸U, ²³²Th the low 40K concentration is noted in site FAT2. The **TABLE 1.** The γ -transitions used to measure the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰k. | Radionuclides of interest | Measured radionuclides | Photon intensity % | Energy (keV) | |---------------------------|---|--------------------|--------------------------| | ²³² Th | ²¹² Pb T _{1/2} =10.64 h | 43 | 238.63 | | $^{238}\mathrm{U}$ | 228 Ac $T_{1/2}$ =6.15 h 226 Ra $T_{1/2}$ =1602 y | 11
3.5 | 338.32
186.20 | | | ²³⁴ Th T _{1/2} =24.1 d | 3.5 | 63 | | $^{40}{ m K}$ | $^{214} Pb \ T_{1/2} = 26.8 \ m$ $^{214} Bi \ T_{1/2} = 19.9 \ m$ | 19, 36
45 | 295.21, 351.72
609.31 | | | $^{40}{ m K}$ | 11 | 1461 | world average concentrations are 35 and 45 Bq kg⁻¹ for 238 U and 232 Th, respectively. The typical ranges are 16 to 116 Bq kg $^{-1}$ for 238 U and 7 to 50 Bq kg $^{-1}$ for 232 Th. The world average concentration is 420 Bq kg⁻¹ for ⁴⁰K, and the typical range is 100 to 700 Bq kg⁻¹ for ⁴⁰K [14]. The average value of Ra_{eq} in the study area is 339.16 ± 1.25 Bq kg⁻¹ as shown in Table 3, which are less than the 370 Bq kg⁻¹ recommended maximum levels of radium equivalents in soil [22]. Therefore, the soil is suitable for use for agriculture and building materials. The average absorbed dose rate is 163.57±0.56 nGy h⁻¹ for soil samples. This value is about three times higher than the world average dose rate of 55 nGy h⁻¹ [14]. The outdoor annual effective doses ranged from 0.06 to 0.50 mSv y⁻¹ with a mean value of 0.2007±0.0006 mSv y⁻¹ in soil; while the worldwide average annual effective dose is 0.5 mSv y⁻¹. The results for individual countries are being generally within the ranges from 0.3 to 0.6 mSv y ¹[14]. The calculated external hazard values are between 0.28 to 2.33 (mean = 0.92). The value of H_{in} ranged from 0.34 to 2.61 (mean = 1.10) for soil samples. The values of Hex and Hin in some sampling sites are higher than unity, which may cause harm to people in these regions. Tables 4 and 5 summarize the natural radioactivity levels and radiation hazard indices in soil obtained in some world regions as well as this study. The activity levels of 238 U, 232 Th, and 40 K in the present study were within the activity range of radionuclides in other listed regions. The values of Ra_{eq} , D_R , ED, H_{ex} , and H_{in} are also within the values reported in other listed regions. **TABLE 2.** Average activity concentration in the soil samples | Location | SC | SC Activity concentration Bo | | | | | |------------|-------------|------------------------------|-------------------|--------------------|--|--| | name | | ²³⁸ U | ²³² Th | ⁴⁰ K | | | | Alansar | ANS1 | 27.96±0.65 | 44.44±0.42 | 1258.25±0.48 | | | | Alansar | ANS2 | 137.67±0.70 | 144.44±0.45 | 1022.23±0.45 | | | | Alansar | ANS3 | 45.54 ± 0.48 | 21.51±0.36 | 1179.6±0.47 | | | | Alansar | ANS4 | 70.28 ± 0.72 | 22.22±0.24 | 865.05±0.36 | | | | Alansar | ANS5 | 90.26 ± 0.57 | 133.33 ± 0.46 | 1494.18 ± 0.59 | | | | Alansar | ANS6 | 34.72 ± 0.58 | ND | 1887.30 ± 0.54 | | | | Alansar | ANS7 | 25.51 ± 0.59 | 11.11±0.22 | 786.41 ± 0.44 | | | | Alfateh | FAT1 | 93.55±0.49 | 31.07 ± 0.42 | 1022.33 ± 0.33 | | | | Alfateh | FAT2 | 96.08 ± 0.42 | 271.40 ± 0.90 | 78.64 ± 0.26 | | | | Alfateh | FAT3 | 102.46±0.41 | 447.71±0.97 | 1572.82 ± 0.56 | | | | Alrashadia | RASH | 43.55 ± 0.32 | 254.78 ± 0.77 | 1651.46 ± 0.50 | | | | | Avera
ge | 69.78±0.53 | 125.63±0.47 | 1165.29±0.45 | | | SC= Site code TABLE 3. Radiation hazard indices of soil samples | SC | Ra _{eq} (Bq
kg ⁻¹) | D _R (nGy
h ⁻¹) | ED (mSv
y ⁻¹) | H_{ex} | H_{in} | |-------------|--|--|------------------------------|-----------------|-----------------| | ANS1 | 188 | 96 | 0.1173 | 0.5087 | 0.5843 | | ANS2 | 423 | 199 | 0.2441 | 1.1422 | 1.5143 | | ANS3 | 167 | 84 | 0.1036 | 0.4513 | 0.5744 | | ANS4 | 169 | 82 | 0.1006 | 0.4555 | 0.6455 | | ANS5 | 396 | 192 | 0.2351 | 1.0693 | 1.3133 | | ANS6 | 180 | 96 | 0.1177 | 0.4862 | 0.5800 | | ANS7 | 102 | 52 | 0.0639 | 0.2753 | 0.3442 | | FAT1 | 217 | 105 | 0.1283 | 0.5853 | 0.8381 | | FAT2 | 490 | 226 | 0.2763 | 1.323 | 1.5835 | | FAT3 | 864 | 410 | 0.5026 | 2.3325 | 2.6094 | | RAS
H | 535 | 259 | 0.3182 | 1.4447 | 1.5624 | | Aver
age | 339.16±
1.25 | 163.57±
0.56 | 0.2007±0.
0006 | 0.915±0.
003 | 1.104±0.
004 | TABLE 4. Comparison of natural radioactivity levels in soil (Bq kg⁻¹) at different sites with those in other countries | Country | $^{40}{ m K}$ | | $^{238}\mathrm{U}$ | | ²³² Th | | |----------------------|---------------|----------|--------------------|--------|-------------------|--------| | | Mean | Range | Mean | Range | Mean | Range | | United States [14] | 370 | 100-700 | 35 | 4-140 | 35 | 4-130 | | Armenia [14] | 360 | 310-420 | 46 | 20-78 | 30 | 29-60 | | Bulgaria [14] | 400 | 40-800 | 40 | 8-190 | 30 | 7-160 | | Croatia [14] | 490 | 140-710 | 110 | 83-180 | 45 | 12-65 | | India [14] | 400 | 38-760 | 29 | 7-81 | 64 | 14-160 | | Japan [14] | 310 | 15-990 | 29 | 2-59 | 28 | 2-88 | | Greece [14] | 360 | 12-1570 | 25 | 1-240 | 20 | 1-190 | | Portugal [14] | 840 | 220-1230 | 49 | 26-82 | 51 | 22-100 | | Russia [14] | 520 | 100-1400 | 19 | 0-67 | 30 | 2-79 | | Spain [14] | 470 | 25-1650 | | | 33 | 2-210 | | Norway [14] | | 114-643 | | 17-134 | | 10-52 | | France [23] | | 348-802 | | 28-53 | | 22-42 | | Hungary [24] | | 176-567 | | 0-1346 | | 15-41 | | Argentina [25] | | 568-817 | | | | 35-48 | | Malaysia [3, 6-10] | 615 | 87-1827 | 133 | 2-799 | 133 | 6-667 | | Iraq [3] | 286±65 | 243-369 | 78±18 | 55-102 | 78±20 | 64-92 | | Iraq (Present Study) | 1165.29±0.45 | 79-1887 | 69.78±0.53 | 26-137 | 125.63±0.47 | ND-448 | TABLE 5. Radiation Hazard indices of soil samples compared with the values reported from other countries | Country | Ra _{eq} (Bq kg ⁻¹) | D _R (nGy h ⁻¹) | ED (mSv y ⁻¹) | H_{ex} | \mathbf{H}_{in} | |----------------------|---|---------------------------------------|---------------------------|-----------|----------------------------| | Nigeria [26] | 50-110 | 23-52 | 0.06-0.02 | 0.29-0.14 | 0.18-0.37 | | Serbia [27] | | 92-316 | | | | | Jordan [28] | 12-702 | 45-71 | 0.05-0.08 | 0.87-4 | | | Yemen [29] | 191 | 89 | | 0.52 | | | Bangladesh [30] | 77-151 | 74-35 | | | | | Egypt [31] | 152 | 82 | | | | | Thailand [32] | | 81-90 | 0.10-0.11 | | | | China [33] | 230-676 | 86-237 | 0.10-0.29 | 0.60-1.80 | | | Malaysia [3, 6-10] | 127-1103 | 125-496 | 0.07-0.60 | 0.34-2.90 | 0.48-4.01 | | Iraq [3] | 213-283 | 98-129 | 0.12-0.16 | 0.58-0.76 | 0.83-1.11 | | Iraq (Present Study) | 102-864 | 52-410 | 0.06-0.50 | 0.28-2.33 | 0.34-2.61 | #### **CONCLUSIONS** It is concluded that the activity concentrations for ²³⁸U, ²³²Th, and ⁴⁰K in soil samples in the present study were within the activity values for other regions around the world. The low concentrations of ²³⁸U, ²³²Th, and ⁴⁰K measured in soil samples suggest their suitability for use as building materials. The levels of natural radioactivity in the study areas were within normal values (H_{ex} and H_{in}< 1), except those in ANS2, ANS5, FAT2, FAT3, and ALRASHADIYA samples. The average absorbed dose rate calculated from the soil samples was 164 nGy h⁻¹. This value is about three times higher than the world average dose rate of 55 nGy h⁻¹. The high concentration of radium found to be in FAT3 and thus to consider the main reason for the presence of radon gas, which of role causes a direct radiation exposure by inhalation and thus the high concentration of thorium. The excessively use of chemical fertilizers and insecticides in FAT3 site, that contain high levels of radioactive isotopes. #### ACKNOWLEDGMENT The author acknowledges the financial support of the College of Science of the University of Kufa. #### **REFERENCES** - Almayahi, B., Alnafehi, M., Shnayn, M., 2007. Determination of radioisotopes in soil samples using NaI (Tl) scintillation detector. Kerbala University, 6 (4); 17-21. - Alnafehi, M., Almayahi, B. A., 2008. Measurement of radioactivity of surface water and sediments by gamma rays spectra in some of Hilla regions, Basrah Researches (Sciences) 34 (2B); 1-6. - Alnafehi, M., Almayahi, B. A., 2008. A use of gamma ray spectroscopy analysis technique to measure the radioactivity for samples of underground water, Kerbala University 6 (1); 58-66. - Almayahi, B., 2008. Exposure rate measurements of the natural background radiation in the colleges of science and agriculture-Kufa University. Babylon University, 5; 3. - Almayahi, B., Aljoher, D., Alnafehi, M., 2009. Calculating radiation dose of radon using technical analysis of the spectrums gamma in Najaf city. Babylon University, 17:4. - Almayahi, B., 2010. Exposure rate measurements of the natural background radiation in some Najaf regions. Al-Qadisiyah for Pure Science, 15 (4): 1–8. - Almayahi, B. A., Tajuddin, A. A., Jaafar, M. S, 2012. 210Pb, 235U, 137Cs, 40K, and 222Rn concentrations in soil samples after 2010 Thai and Malaysian floods. Advan. Biomedical. Engineering. 6:593-598. - Almayahi, B. A., Tajuddin, A. A., Jaafar, M. S., 2012. 238U, 232Th and 40K concentrations evaluation for soil and water samples in northern malaysian peninsular. International Conference on Environmental Research and Technology (ICERT 2012). 1-6. - Almayahi, B. A., Tajuddin, A., Jaafar, M., 2012. Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula. Applied Radiation Isotopes Journal, 70, 2652-2660. - Almayahi, B. A., Tajuddin, A. A., Jaafar, M. S., 2012. Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia. Radiation Physics Chemistry, 81; 1547-1558. - Almayahi, B., 2014. Gamma spectroscopic of soil samples from Kufa in Najaf governorate, Iraq. World Applied Science, 31; 1582-1588. - Almayahi, B. A., Tajuddin, A. A., Jaafar, M. S., 2014. Measurements of natural radionuclides in human teeth and animal bones as markers of radiation exposure from soil in the Northern Malaysian Peninsula, Radiation Physics Chemistry 97:56-67. - Nahlah F. M., Shaymaa A. K., Alasadi A.H., Almayahi, B. A., 2014. Natural Radioactivity Measurements in different regions in Najaf city, Iraq. International Computer Trends Technology 9: 286-289. - UNSCEAR, 2000. UNITED Nations Scientific Committee On The Effect Of Atomic Radiation, Sources and Biological Effects Of Ionizing Radiation. United Nations, New York. - Subjender A., Venkat N., 1995. Determination of Uranium, Thorium and Potassium in rock and soil samples using lowenergy gamma ray spectrometry. Terra Nova 7: 321-326. - ICRP, International Commission on Radiological Protection. Radionuclide transformations: energy and intensity of emissions. ICRP publication 38. Annal. International Commission on Radiological Protection (ICRP), 11–13, 1983. - Mashra, U., Sadarivan, S., 1971. Gamma spectroscopic measurements of soil radioactivity. Applied Radiation Isotopes Journal, 22; 256–262. - IAEA, International Atomic Energy Agency, Measurement of Radionuclides in Food and Environmental Samples. Technical Report Series 295, Vienna, Austria, 1989. - Firestone, R. B. Shirely, V. S., 1998. Table of Isotopes. 8th ed. Wiley. New York. - Beretka, J., Matthew, J., 1985. Natural radioactivity of Australian building materials, industrial wastes and by products. Health Physics Journal, 48: 87-95. - Malanca, A., Pessina, V., Dallara, G., 1993. Radionuclide content of building materials and gamma-ray dose rates in dwellings of Rio-Grande Do-Norte Brazil. Radiation Protection Dosimetry Journal, 48: 199-203. - OECD, Exposure to radiation from the natural radioactivity in building materials. Report by a Group of Experts of the OECD. Nuclear Energy Agency, Paris, France, (1979). - Perrin, J., Carrier, F., Guillot, L., 2006. Determination of the vertical distribution of radioelements (K, U, Th, Cs) in soils from portable HP-Ge spectrometer measurements: A tool for soil erosion studies. Applied Radiation and Isotopes Journal, 64: 830–843. - Papp, Z., Dezso, Z., Daroczy, S., 2002. Significant radioactive contamination of soil around a coal-fired thermal power plant. Environmental Radioactivity Journal, 59: 191–205. - Montes, M., Mercader, R., Taylor, M., Runco, J., Desimoni, J., 2012. Assessment of natural radioactivity levels and their relationship with soil characteristics in undisturbed soils of the northeast of Buenos Aires province, Argentina. Environmental Radioactivity Journal, 105: 30-39. - Agbalagba, E., Onoja, R., 2011. Evaluation of natural radioactivity in soil, sediment, and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Environmental Radioactivity Journal, 102: 667-671. - Žunic, S., Kozakb, K., Ciotoli, G., Ramola, C., Kochowska, E., Ujic, P., Celikovic, I., Mazur, J., Janik, M., Demajo, A., Birovljev, A., Bochicchio, F., Yarmoshenko, V., Kryeziuh, D., Olko, P., 2007. A campaign of discrete radon concentration measurements in soil of Niška Banja town, Serbia. Radiation Measurements Journal, 42: 1696-1702. - Al-Kharouf, S., Al-Hamarneh, I., Dababneh, M., 2008. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. Environmental Radioactivity Journal, 99: 1192-1199. - Abd El-Mageed, I., El-Kamel, H., Abbady, A., Harb, S., Youssef, M., Saleh, I., 2011. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen. Radiation Physics and Chemistry Journal, 80: 710-715. - Alam, N., Chowdhury, I., Kamal, M., Ghose, S., Islam, N., Mustafa, N., Miah, H., Ansary, M., 1999. The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of cox's bazar, Bangladesh. Environmental Radioactivity Journal, 46:243-250. - Ahmed, K., El-Arabi, M., 2005. Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt, Environmental Radioactivity Journal. 84: 51-64. - Santawamaitre, T., Malain, D., Al-Sulaiti, A., Matthews, M., Bradley, D., Regan, H., 2011. Study of natural radioactivity in riverbank soils along the Chao Phraya river basin in Thailand. Nuclear Instruments and Methods in Physics Research A Journal, 652: 920–924. - Song, G., Chen, D., Tang, Z., Zhang, Z., Xie, W., 2012. Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China. Environmental Radioactivity Journal, 103: 48-53 ### **Persian Abstract** DOI: 10.5829/idosi.ijee.2015.06.03.08 #### ىكىدە این مطالعه با استفاده از اسپکترومتر اشعه گاما (NaI(T1) برای ارزیابی مواد رادیواکتیو طبیعی انجام شده است. این دستگاه برای تعیین کمی و کیفی اورانیوم، توریوم و پتاسیم در نمونه های خاک جمع آوری شده از شهر نجف عراق به کار گرفته شد. میانگین غلظت ها در نمونه های خاک جمع آوری شده در محدوده ی 23 و بتا یا تا ۲۰۸ تا ۲۰۸ و تا ۱۸۸۷ و 23 و تا ۱۸۸۷ و 23 و تا ۱۸۲۷ و 23 و تا ۱۸۲۷ و 23 و تا ۱۸۸۷ و شاخص های داخلی محاسبه شد. مقادیر 23 نمونه های خاک کمتر از ۳۷۰ 23 هعرفی شده سطح ماکزیمم مقادیر رادیم در خاک بود.