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Abstract:  Nanotechnology  and  Nanoscience  studies  have  received  much  attention  in the last decade.
These studies involve a wide spectrum of research areas and industrial activities from fundamental sciences
to applied sciences on the nanoscale. One of the major developments in nanotechnology studies is the
production and application of nanoparticles (NPs) in biological sciences. In general, nanoparticles are smaller
than  1000 nm,  produced  from different materials in different shapes such as spheres, rods, wires and tubes.
This assay briefly summarizes the major types of nanoparticles that have been used so far, methods of
formulation and discussed the possible applications of these NPs in biological and environmental research and
the potential environmental and health impact associated with the use of these NPs.
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INTRODUCTION Nanoparticle Formulations: This section  provides a

Nanotechnology is revolutionizing medicine, applications and limitations, with a view to familiarizing
particularly  in  the  fields  of imaging and drug delivery. the reader with the basic details of those formulations
For over 30 years, NPs defined as ordered structures with available for application.
diameters smaller than 1000 nm [1], have been engineered
to develop novel diagnostic methods, targeted therapies Nanosized Drug Substance: Direct nanosizing of poorly
and  vaccine  development.  Recently,  nanoproteomics water-soluble drugs enhances their solubility. Micron-size
are used for identification and characterization of drug particles are milled in a water-based stabilizer
biomarkers for  cancer  and  other  fatal  diseases  to  aid solution for 30-60 minutes to generate NPs with unimodal
an early diagnosis and monitor disease progression. size distribution. The amount of the suspension stabilizer
Nanoproteomics offers several advantages such as is critical since too little of it is unable to prevent
ultralow detection, short assay time, high-throughput aggregation of small particles and too much of it may
capability and low sample consumption [2]. In some of accelerate particle growth by Ostwald ripening. Increasing
these areas, NPs have delivered effective and the specific surface area might be useful for formulation
scientifically validated solutions, leading to their of drugs with a low solubility in aqueous environments
incorporation  into   marketable   products  that  are [3].  Milling  or  Size  reduction is obtained by milling
already extending to veterinary species.This assay pearls made of steel, glass, zircon dioxide, or polymers
focused  on  the basic principles behind the use of NPs such as hard polystyrene. Other milling techniques use
for drug delivery, diagnostics and vaccine formulation. rotor-stator colloid mills, or jet mills where particles are
Common forms of NPs and their formulation are accelerated and break upon impaction on either another
discussed, along with their clinical applications and particle or a wall.Also, several other methods have been
limitations, providing the reader with a realistic synopsis described in the literature for nonosizing of drugs such as
of the practical applications of NPs to veterinary medicine the use of supercritical fluid technologies principally
at present and in the near future. leading  to  particles  in  the size range of 100 to 500 nm for

brief synopsis of the most prominent NPs systems, their
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griseofulvin  [4]  or  rifampicin  [5].  With  supercritical compatible liquids. They are often soluble only in organic
fluids like carbon dioxide, particle formation can be solvents and depending on their structure, most synthetic
controlled by modifying the pressure which governs polymers are highly lipophilic and require additional
solubility of the drugs therein. High pressure generally excipients.
provides for higher drug solubility, so that upon
reduction of the pressure the drug precipitates [6]. The Lipid Based Colloidal Systems: They resemble oil-in
higher the drop in pressure is, the faster precipitation water emulsions, but with the internal phase being small
occurs and in consequence the smaller the resulting in size and in many cases of solid consistency. Another
particles become. Another method to prepare amorphous lipid based colloidal system are liposomes, vesicular
NPs suspension of poorly water-soluble drugs like structures akin to cell membranes.
Cyclosporine A is evaporative precipitation into aqueous Solid lipid nanoparticles SLN can be prepared by
solution. Rapid evaporation of a heated organic solution rapidly injecting a solution of solid lipids in a water
of the drug is followed by its atomization into aqueous miscible  solvent  mixture  into  water  to  get particles of
solution. This leads to NPs suspension, which can be 80-300 nm [14, 15].
dried to produce oral dosage forms with low crystallinity SLN often require surfactants for their stabilization or
and small particle size [7]. prevent aggregation and to enable a nanosized dispersion

Polymeric  Nanoparticles:  Polymeric  NPs are prepared surfactants lead to more round particles, whereas plain
by combining the active substance/drug with a polymer. lipids generally form cubic crystal-like particles. SLNs
The active components are dissolved in, entrapped in, or exhibit several advantages over polymeric NPs. For
adsorbed to the surface of the polymer NPs. Polymeric example, they have comparatively higher drug entrapment
NPs exist in a variety of forms ranging from nanospheres efficiency and can be administered by multiple routes
to dendrimers and utilize both natural and synthetic (orally, topically and IV). Moreover, hydrophobic drugs
polymers. Polymer delivery characteristics, surface are stable in their lipid matrix. They protect sensitive
properties, morphology and composition can be readily drugs from the external environment. They have minimal
tailored and optimised to achieve the desired drug toxicity and they do not require the use of organic
loading, biocompatibility, targeting, degradation and solvents in their production (which can be easily scaled
controlled release kinetics [8]. up to commercial level [16, 17]. Additionally, SLNs can

Polymers used for parenteral delivery have to be provide controlled release formulations lasting up to
biodegradable and are mostly based on polyacrylates several weeks. They adhere to mucosal surfaces, promote
(e.g., polycyano-acrylates) [9, 10] or polyesters (e.g., the absorption of orally administered drugs and have
polylactides) [11, 12]. A number of different polymers particular potential for drug delivery to the brain as they
have  been  evaluated for the development of oral are capable of transporting pharmaceuticals across the
vaccines, including naturally occurring polymers (e.g., blood brain barrier [18, 19].
starch, albumin, chitosan, alginates and gelatin) and Liposomes are vesicular carriers comprising a
synthetic polymers (e.g., polylactide-co-glycolides hydrophilic drugs in the core surrounded by one or more
(PLGA), polyanhydrides, polycyanoacrylates and lipid bilayer membranes that consists typically of
phthalates). phospholipids (lecithins), cholesterol and glycolipids and

Chitosan is a deacetylated chitin that is of great having a thickness of about 5 nm. Liposomes can be
interest as a functional material that can increase the produced in sizes from below 50 nm up to several µm
paracellular permeability of intestinal epithelia. Because of depending on the composition and the manufacturing
low production costs, biocompatibility and very low process [20]. 
toxicity, chitosan is a very interesting excipient for Liposomes are suitable for topical, IV and IM
vaccine delivery research [13]. administration, but because they are susceptible to

Polymer chains are cleaved by hydrolysis, leading to degradation in the gastrointestinal tract they are rarely
water soluble and physiological lactic acid as suitable for oral use. They have been investigated for
metabolite.synthetic polymers may be less advantageous targeted drug, imaging agent, vaccine and gene delivery
due to their limited solubility in physiologically with promising results [21, 22].

being generated during processing. Also, these
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Nanoemulsions are dispersions of oil and water Carbon Nanomaterials: Carbon nanomaterials such as
where the dispersed droplets are stabilised with a surface carbon nanotubes and carbon nanohorns have been
film composed of surfactant and co-surfactant. Most investigated as drug carriers. They also have potential for
commonly, drugs are loaded into the dispersed phase vaccine delivery as they amplify the immunological
where the droplet size is typically 20- 200 nm. An oil-in- response [32]. However, single walled carbon nanotubes
water emulsion consists of dispersed oil droplets within trigger oxidative stress and are cytotoxicin cultured cell
an aqueous solution. Water-in-oil emulsions and water-in lines [31].
oil- in water emulsions have also been formulated for
biomedical application. Low-cost, solvent free Metallic Nanomaterials: Various metals have been used
nanoemulsions have been produced for use in veterinary to prepare NPs. Gold,silver and copper are most
field [23] and promising results have been achieved using commonly  used,  with  gold  Nps  being  the  most
nanoemulsions for drug delivery, particularly via the oral intensively studied [33, 34]. The main applications of
and transdermal routes [24-26]. However, nanoemulsions metal nanoparticles lie in biosensing/imaging and cancer
are relatively new nanoparticles and a considerable thermotherapy, although they are also being explored for
amount of fundamental work needs to be performed to targeted drug delivery [35, 36]. However, they have a
fully establish their physiochemical behaviour. range of toxic effects which, combined with their
Additionally, the high concentrations of solvents, prolonged retention in tissues [37].
surfactants and co-surfactants in some nanoemulsion
formulations can be toxic to the tissues where they Quantum Dots: Quantum dots are comprised of an
accumulate or are applied, resulting in haemolysis, cellular inorganic  core,  an  inorganic  shell  and  an  aqueous
damage and tissue inflammation [27, 28]. coating to which biomolecules can be conjugated. It

Polymeric Micelles: Polymeric micelles have a unique stimulated by light so that its biomedical applications are
structural composition characterized by a hydrophobic primarily focused on imaging [38] and used as biomarkers
core sterically stabilized by a hydrophilic shell or corona providing a highly sensitive diagnostic and research tool
to be highly water soluble. The hydrophilic shell may be [39]. However, clinical application of quantum dots is
one of four compounds like phospholipid or hydrophilic limited  by  their  potential  cytotoxicity  and  slow
polyethylene oxide and hydrophobic polypropylene oxide elimination [40, 41].
blocks or poly (L-amino acid), or finally polyester that is
composed of biocompatible polymers [29]. Polymeric Magnetic Nanoparticles: Magnetic nanoparticles are
micelles have long circulation times ensue from the steric commonly composed of iron oxide due to its high in vivo
hindrance awarded by the presence of a hydrophilic shell degradability. They have been investigated for use as
and the small size (l0- 100 nm) [30]. biosensors, for imaging and for drug delivery where it can

Inorganic  Nanoparticles:  In  early  studies, inorganic localised disease sites by application of a high gradient
NPs demonstrated great potential as nanocarriers for magnetic field over that tissue [42, 43]. Concerns over
therapeutic agents, vaccines and imaging agents. toxicity and the accumulation of metal-based particles are
However, their clinical application is limited by concerns a significant barrier to the clinical application of magnetic
over toxicity, lack of biodegradability and persistent nanoparticles [44] at the present time.
tissue accumulation. Therefore relatively few inorganic
nanoparticles have progressed to clinical application [31]. Formulation of Some Magnetic Nano Particles: To

Ceramic Nanomaterials: Ceramic NPs made of materials 4.0 g of FeCl •4H O were dissolved in 100 mL of deionised
such as silica, alumina and titania, have several water, degassed with nitrogen gas for 15 min and heated
advantages  over  polymeric  Nps systems   in  that they to 80°C. Then, 15 ml of NH OH (32% solution) was added
are easy to prepare and engineer to a desired shape, size dropwise  to  the  solution  as  precipitating  agent. After
and porosity. Also, they protect the adsorbed particles 15 min the solid was separated by a magnet and washed
against denaturation induced by extreme pH and three times with 0.1 mol L  NaCl solution [45].
temperature.

However, titania NPs appear to possess considerable Magnetite Silica (SiO2/Fe3O4) Nanopartices: As it is
in vivo toxicity [31]. possible  to  attach drugs or enzymes to the surface of the

measures approximately 2-10 nm and fluoresce when

be pulled out of suspension in the blood stream and into

synthesise Fe O  nanoparticles, 10.4 g of FeCl •6H O and3 4 3 2

2 2

4
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Fig. 1: El-Hady et al. [46] a) Fe3O4 nanoparticles, (b) magnetite silica nanoparticles, (c) magnetite silica NPs with
immobilized lipase and(d) magnetite silica nanoparticles without lipase

Fig. 2: Magnetic solid-phase extraction procedure Chen et al. [48]

magnetic  particles  and use magnetic fields to hold them which 25 ml of 10 mg/ml sodium tripolyphosphate (TPP)
at the site where it is needed, El-Hadi et al.  [46]  used solution was added to cross-link the CS [47].After stirring
silica coated magnetite nanoparticles (SiO /Fe O ) for for 10 min, 15 ml of 0.1 ml/mol Fe(NH ) (SO )  solution was2 3 4

immobilization of lipase enzyme. During the magnetite added into the mixture, under the protection of nitrogen
preparation, they added drops of TEOS into the reaction and  a controlled flow of oxygen (0.5% v/v). Then twenty
mixture of iron during agitation. After homoginzation for five millilitre of 1 N NaOH was added slowly to the
15 minutes followed by sonication for 15 minutes then suspension to precipitate the coated nanoparticles. The
adding NH4OH dropwise with continuous stirring, the resulting Fe O -Cs nanoparticles were recovered from the
silica coated magnetite particles were finally separated suspension by applying a magnet. They were washed
from the liquid using a permanent magnet, washed with with deionized water several times until the pH reached
distilled water several times and allowed to dry in air. 7.0, resuspended in 50 ml of deionized water and stored at
Lipase immobilization was carried out by treatment of the 4°C until use.
lipase solution with the nanoparticles directly. and
Fe O /SiO /enzyme were evaluated under the transmission Immunomagnetic Nanoparticles: Immunomagnetic3 4 2

electron  microscope (TEM) as shown Figure 1. separation employs magnetic particles with bound

Magnetite  Chitosan  Fe O -CS Nanoparticles: Chitosan virus to be separated. Recently, immunomagnetic3 4

solution was prepared by dissolving 1 g of CS powder in separation has been successfully used in water virology,
100 ml of 1% v/v hydrochloric acid (HCL, 38%), after microbiology and parasitology to detect important viral,

4 2 4 2

3 4

antibodies specific against the target (micro) organism or
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microbial and parasitic contamination. Several nanoparticles to extravasate at sites of increased  vascular
immunomagnetic beads are commercially available.

However,  immunomagnetic  particles can also be
prepared in the laboratory using appropriate magnetic
beads and an appropriate antibody. In this procedure, a
magnetic adsorbent (either a general one, such as
magnetic charcoal, or a magnetic affinity adsorbent) is
added to a solution or suspension containing the target
analyte(s). The analyte is adsorbed on to the magnetic
adsorbent and then the whole complex is recovered from
the suspension using an appropriate magnetic separator.
The analyte is consequently eluted from the recovered
adsorbent and analysed [48].

Nanoparticles Improve the Therapeutic Index: There are
over  200  Nps  drug delivery systems in development,
with at least 30 nanoparticle based therapeutic products
approved for clinical use in humans and a similar number
in clinical trials [49, 50]. Many of these preparations are
prohibitively expensive for veterinary use, but, several
nanoparticle formulations are already available on the
veterinary market and as NPs production facilities are
scaled up for commercialisation,these preparations will
increasingly become more affordable for veterinary
application.

Nps improve the therapeutic index of the
pharmaceutical  agents. They carry and enable the use of
drugs that would otherwise be insoluble or unstable.
Because  of  preferential  accumulation  at  target sites,
NPs increase the concentration of pharmaceutical at its
intended site of action, resulting in increased efficacy and
lower systemic toxicity and drug concentration in healthy
tissues.

Lastly, NPs have reduced clearance compared to the
parent drug and thus provide a method of sustained
controlled release over a period of days or even weeks
[51-53]. As a consequence of these mechanisms, NPs
formulations require a reduced dose compared to free
drug. This is particularly pertinent to veterinary medicine
as it may allow the use of expensive human
pharmaceuticals whose application has previously been
precluded by the cost of dosing and reduce the levels in
carcasses leading to lower environmental impact and
lower residues in food. NPs can be loaded with drugs via
encapsulation within the particle or via surface attachment
[54]. The method of drug loading depends upon the type
of nanoparticle as well as the drug type and the target.
Targeting of NPs to specific sites is achieved passively
via the enhanced permeability and retention effect [55].
This  effect  relies  on   the   ability   of   intravenous   (IV)

permeability, but otherwise be retained in the circulation.
This results in accumulation of NPs at sites of increased
vascular permeability (e.g. tumours, infections and areas
of inflammation), hence targeting of the agents they carry
to these sites [56]. Opsonisation and subsequent uptake
of NPs by the reticuloendothelial system reduces the
number remaining in circulation and able to extravasate
[57]. To overcome this, nanoparticles can be coated with
hydrophilic substances, the most commonly used being
polyethylene glycol, which reduces opsonisation and
prolongs circulation time [58]. In fact, omission of a
hydrophilic coating results in rapid uptake of NPs by cells
of the mononuclear phagocyte system, rendering them
ideal for targeting intracellular parasitic, bacterial, fungal
and viral infections [59]. Passive targeting is often less
expensive than active targeting and ispotentially more
useful for application to veterinary medicine.In addition to
passive targeting, active targeting may be necessary to
increase the interaction between NPs and target tissues.
This is achieved via attachment of a targeting moiety to
the nanoparticles, causing them to adhere to a particular
receptor/cell type so increasing their concentration at the
site of interest [60].

The use and development of antibodies and antibody
fragments to target NPs to a particular tissue or cell type
can be expensive. However, targeting NPs to specific
tissues simply by altering their charge, or coating them in
a substance that is naturally taken up by that tissue is a
more cost-effective approach in developing targeted NPs
for veterinary use. This method has been successfully
used to enhance NPs adherence to and uptake across the
blood-brain barrier for treatment of neurological diseases
[61, 62] at the target site the next essential step is drug
release. A myriad of mechanisms for NPs uptake may
occur based on the properties and surface characteristics
of the nanoparticle in question [63]. Possible mechanisms
of drug release are liberation due to NPs disintegration, or
enzymatic breakdown; diffusion from the intact NPs;
release from the surface of the nanoparticle; fusion of the
NPs with the cell surface membrane and subsequent
release of contents into the cell; endocytosis of the NPs
with subsequent release of contents into the endoplasmic
reticulum and triggered release initiated by application of
an external factor, such as a magnetic field or a change in
temperature or pH [64, 65]. Often a combination of these
processes coexists and particles can be engineered to
have optimal and controllable release kinetics that target
them to specific intracellular pathways.
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For more understanding to the concept we give a better target mucosal immunity [69-71]. This makes them
model such as the recently developed liposome- highly amenable to engineering for veterinary field where
encapsulated hemoglobin/silica nanoparticle (LEHSN) as large numbers of animals may need to be treated at once
an oxygen carrier. It provides an alternative for blood in a commercial unit, or when vaccination by conventional
transfusion, which effectively solves  some  problems means is inconvenient due to extensive management
such as limited number of donors and the potential risk systems or poor accessibility (e.g. wildlife). NPs adjuvants
brought by  unmatched blood or virus infection like increase the immunogenicity of a vaccinein five (potential)
human immunodeficiency virus (HIV). As Hb molecule is ways [68]. Firstly, by mimicking pathogen-associated
a tetramer that rapidly dissociates in to two dimers, which molecular  patterns  they  can   activate pattern
results in renal failure [66]. LEHSN was fabricated by a recognition   receptors,   such  as Toll-like receptors and
water-in oil-in-water (W/O/W) double emulsion approach. trigger intracellular signalling cascades that initiate the

Briefly,  Silica  NPs(SNs~10 nm) was added innate immune response, resulting in enhancement of the
Intobovine Hb aqueous solution to obtain a complex of adaptive immune  response. Secondly, by upregulating
Hb/SNs. Which was added into water in which acetyl co-stimulatory molecules on antigen presenting cells.
trimethyl  ammonium  bromide  (CTAB) was dissolved, Thirdly, NPs adjuvants can control the residence time,
followed by an ultrasonic dispersion for 5 min. The CTAB location and dose of antigen released so as to maintain
aqueous applications.  Solution  containing Hb/SNs immunity levels and enhance translocation of antigen to
served as the water  phase  for  the following emulsion. lymph nodes. Fourthly, they act as a depot to provide
Under stirring, the water phase was mixed withthe oil prolonged delivery of antigens. Finally, NPs canbe
phase composed  of  chloroform and lecithin to get a engineered to produce virus like particles that have similar
water-in-oil  (W/O)  emulsion.  Then additional water morphology to virus capsid and stimulate immune
(acted as the outer water phase) was added into the W/O responses without the infectious genetic material that is
emulsion to form a W/O/W double emulsion. The final responsible for host infection [68]. Nanoparticles are
emulsion system was vacuum evaporated to remove the compounds that include amino acid - poly -glutamic acid
organic solvent and to obtain LEHSN.  SNs served as ( -PGA) [69, 72] poly lactic acid (PLA) [73], poly lactic-co-
rigid core provide a supported framework for lecithin glycolic acid (PLGA) [74], chitosan [75], gelatin [76],
membrane and enhance the stability of liposomes that calcium phosphate (CaP) [77], silica [78], gold [79],
formed a cell membrane-like environment for the magnetite [80], strontium phosphate [81], magnesium
controlled release of Hb. phosphate and manganese phosphate [82]. NPs adjuvants

In comparison with liposome-encapsulated Hb (LEH), that are approved for veterinary use (or in clinical trials)
LEHSN shows substantially enhanced stability and include emulsions, liposomes, polystyrene nanobeads,
improved release property of Hb in vitro [67]. immune-stimulating complexes (ISCOMs) and in

Nanoparticle Based Vaccine Delivery: Vaccines, nanoparticle adjuvantsneed to be inexpensive, stable,
designed to stimulate a long lasting and protective easy to administer and biodegradable in species used for
antibody response to a pathogen, are comprised primarily human consumption [85]. To date, more than 40 diseases
of antigen and adjuvant. Traditionally, inactivated of animal species including equine influenza and
microorganisms providedthe antigen, but recently there Streptococcus equi var. equi infection in horses [86, 87],
has been a shift towards the use of safer synthetic foot-and-mouth disease, bovine virus diarrhoea virus and
peptides  and  recombinant  proteins  [68]. Alone, these Toxoplasma gondii in ruminants [88-90]; Newcastle
new vaccine candidates are often poorly immunogenic disease and H5N1 influenza in poultry [91, 92],
and sensitive to degradation and they require an enterotoxigenic E. coli and atrophic rhinitis in swine [93]
optimised adjuvant that improves immunogenicity [68]. and parvovirus and atopic dermatitis in dogs [69, 84, 94]
Conventional adjuvants are not tuneable, but with the have nanoparticle vaccine delivery systems that are either
advent of nanotechnology a plethora of novel antigen successfully developed or under development.
carrying strategies are now available. These novel Nps Calcium phosphate nanoparticles provide safe and
based adjuvants are highly tuneable and can be easily manufactured vaccine adjuvant and delivery
engineered for reduced dosage frequency via a system for DNA vaccines. Recently, FMDV “O”P1-3CD
convenient administration route in order to provoke a DNA  vaccine  was  encapsulated   in   calcium  phosphate
specific immune response, e.g. the intranasal route to nanoparticles of size 50-100 nm diameters. In vitro

organicparticles [68, 83, 84]. For practical veterinary use,
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transfection efficiency of these calcium phosphate We can conclude that metallic and inorganic
nanoparticles was found to be as good as commercial nanoparticles exhibit unique properties in terms of particle
transfecting reagent lipofectamine. In vivo analysis of the aggregation, photoemission, electrical and heat
calcium phosphate nanoparticle P1-3CD(CaPNP1-3CD) conductivity.
FMDV “O” vaccine in mice and guinea pigs could induce Immunoassays can benefit from the application of
significant cell mediated and humoral immune response. magnetic nanoparticles or microparticles. In general,
Also, immunized mice and guinea pigs were protected magnetically responsive particles can be used in an
against the challenge virus [95]. A detailed review of enormous number of applications, ranging from molecular
nanoparticle based veterinary vaccines is provided biology to waste water treatment [106, 107]. Magnetic
byScheerlinck and Greenwood [83]. Also, calcium particles exhibit important properties where it has the
phosphate (CaP) particles were coupled with inactivated power of selective separation and removal of magnetically
Newcastle disease virus (NDV) vaccine.The surface responsive nanoparticles and microparticles and other
morphology of CaP particles coupled to NDV was found relevant materials from complex samples using an external
to be spherical, smooth and with a tendency to magnetic field (e.g. an appropriate magnetic separator,
agglomerate. The humoral and cell mediated immune permanent magnet, or electromagnet). Also it has the
responses induced by CaP coupled NDV vaccine were ability of targeting and localization of magnetic particles
assessed in comparison to a commercial live vaccine (RDV to the desired place using an external magnetic field [108].
‘F’) and showed prolonged haemagglutination inhibition The potential toxic effect of nanoparticles on
(HI) and enzyme linked immunosorbent assay (ELISA) organisms in natural environments is still unknown.
titres  in  the  serum  even  at  fourth   and   fifth  week However with the current practice of discharging
post-vaccination (PV), unlike RDV ‘F’ inoculated chickens nanoparticle waste, nanoparticles will find their way into
whose titres declined to insignificant levels by this time waste water and eventually to different aquatic
[96, 97]. environments. Thus there is a need to understand the

Nanoparticles  as  Diagnostic  Tool:  Nps  have been other organisms, while the use of nanoparticles in various
widely used as a signal reporters to detect biomolecules scientific researches and medical applications continues.
in DNA assay, immunoassay and cell bioimaging. Gold
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