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Abstract: Partial Least Squares Regression (PLSR) is a method for constructing predictive models when the
variables are many and highly collinear. Its goal is to predict a set of response variables from a set of predictor
variables. This prediction is achieved by extracting a set of orthogonal factors called latent variables from the
predictor variables. This study investigated the performances of model selection criteria in selecting the true
number of latent variables from PLSR models for data sets that have various observations and variable numbers.
Their  performances  have  been  compared  in  terms  of  the  simulation  study  and  5-fold cross  validation.
This simulation has been performed for different numbers of predictor variables and different numbers of
observation units to compare the performance of two types of Multivariate Akaike Information criterion and
three types of Wold’s R criterion in finding the number of true latent variables. The simulation results show that
all criteria achieved the true number of latent variables for a small-sized design matrix. It was noticed that when
the observation numbers were increased, PLSR worked with a larger number of latent variables, except for some
cases. Wold’S R_2 and Wold’S R_3 found less numbers as the number of latent variables.
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INTRODUCTION the PLS method for chemical applications was pioneered

PLSR is a wide class of methods for modeling seventies after an initial application by [2, 3]. [4] was
relations between sets of observed variables by means of offered a review of historical development of PLS. PLS
latent variables. It is a combination of partial least squares regression was studied and developed from the point of
analysis and multiple linear regression and allows view of statisticians by [5]. The book [6] used statistical
modeling and prediction for multiple response variables concepts that began to provide a theoretical basis for
and highly correlated or collinear multiple predictor PLS.  The  recent investigations were provided by [7-12].
variables. The aim of this technique is to summarize a In PLS, latent variables are obtained by using different
large set of variables in terms of statistical similarities algorithms which make dimension reduction by using
between the original variables by losing the minimal singular or eigen value decomposition. These latent
amount of information, which is obtained by the help of variables, which are the new predictor variables and the
some algorithms. The application fields of PLSR also linear combinations of the original predictor variables and
cover cases, in which there are more than one response which do not have linear relationship among them, are
variable, thus serving as an alternative to MANOVA used in the regression partition and they also ideally
designs. In these cases, where multiple response variables model the response variables. Following dimension
are used, PLSR creates other latent variables from the reduction in PLS part, some model selection criteria are
linear combination of the original response variables that used to obtain the latent variables, the most relevant ones
act as synthetic response variables [1]. in describing the variability in the response variables.

The pioneering work in PLS was done in the late These methods are called model selection methods and
sixties by H. Wold in the field of econometrics. The use of play an important role in selecting the best model.

by the groups of S. Wold and H. Martens in the late
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In this study, we provide a simulation study of #2, the covariance matrix X X is computed only once with
dimension reduction methods for PLSR using kernel the original X. For more information, see [19].
algorithm and 5-fold cross validation. Our goal is to carry In this study one of the Kernel algorithms, Modified
out a simulation experiment: varying the number of Kernel algorithm #2, was used to select the number of
predictors and observation units in order to compare the latent variables. It was an alternative to the NIPALS
performances of M , M  and Wold’s R (for three algorithm for handling datasets where N>>M. ThisAKAKIE BEDRICK

thresholds values) criteria for selecting the true number of algorithm uses X YY X matrix since it is independent of
latent variables. PLS was briefly reviewed and model the number of observations. This property provides
selection criteria were described in Sections 2 and 3, working with a small matrix. This algorithm innovates to
respectively. The data simulation procedure used to study update X Y variance-covariance matrix by the
the  performance  of these dimension reduction methods multiplication of an updating matrix (I – wp ) without
is described in Section 4. Results of the simulation study interfering with the original X and Y matrices. In (I – wp ),
are described in Section 5. I represents identity matrix.

MATERIALS AND METHODS Model Selection Criteria for Dimension Reduction in

PLS Model and PLS Algorithms: In PLS partition, the the performance of regression models. Selecting the best
data matrices can be decomposed as the sum of the latent model depends on the correct selection of variables.
variables given in [13] as follows: Hence, the model prediction error is minimized and the

(1) criterion is required to ensure that the same decision

(2) two different forms of Multivariate Akaike Information

where t  and u  are latent variables and t ‘s are orthogonal used to select latent variables.j j j

to each other and also t  is orthogonal to the subsequent Akaike Information Criterion was developed byj

u . Hirotsugu Akaike under the name of an informationj

M predictor variables are reduced to a fewer number criterion (AIC) in [20] and proposed by [21]. It is a
of latent variables, A(A M), by algorithms in partial least measure of the goodness of fit of an estimated statistical
squares. The most commonly used algorithms are NIPALS model. It is a way of selecting a model from a set of
algorithm, UNIPALS algorithm, KERNEL algorithm, models. Given a data set, several competing models may
SAMPLS algorithm and SIMPLS algorithm. Early studies be ranked according to their AIC, with the one having the
were about NIPALS algorithm. Then, the other algorithms lowest AIC being the best. The multivariate version of
were  investigated  on  the  basis of this algorithm. AIC from [22] under the multivariate normal assumption
SIMPLS algorithm was studied by [14]. KERNEL algorithm for the multivariate regression model is given as follows:
was studied by [15]. Also, [16] studied the KERNEL
algorithm.

Choice of algorithm depends strongly on the shape
of data matrices to be studied. In some studies, the (3)
number of observations is much larger than the number of
variables. This causes the algorithm to work with a matrix For more than one response variable (K>1),
which  is  independent  of   the number of observations. multivariate version of AIC was given by Bedrick and Tsai
For an opposite case, where the number of variables (1994):
exceeds the number of observation units, choosing an
algorithm that works with a matrix independent of the (4)
number of variables will be the best choice [17, 18].
Modified  Kernel  algorithm  #2  was generated by [19]. where d = N/[N – (a + k + l)] and  is the maximum
This algorithm was modified from kernel algorithm, likelihood estimator of . In this paper, MAIC from [22]
developed by [15], to provide two faster and more and MAIC from [23] have been shown as M  and
economical algorithms [19]. In modified kernel algorithm M , respectively.

PLSR: Model selection is a critical subject in predicting

model is prevented from redundant variables. Such a

process is used for both models for each simulation and
in order to make a simulation study feasible. In this study

criterion, Wold’s R and adjusted Wold’s R criteria, were

AKAIKE

BEDRICK
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Cross-validation is a very popular technique for than the threshold value. Then, the latent variable (a+1)
model selection and validation. It is used to investigate will be included in the model. Wold’s R_1, Wold’s R_2
the predictive validity of a linear regression equation. It is and Wold’s R_3 have showed the threshold values 1, 0.95
conceptually very simple to understand; however, it is the and 0.90, respectively.
most computationally intensive method for optimizing a
model. Besides, it is the most common approach to Simulation Procedures: Contrary to the fixed effect
estimating the true accuracy of a given model and it is model, the quality of prediction for a random model does
based on splitting the available sample into a training set not always increase with the number of latent variables
and a validation set [24]. used in the model. Typically, the quality first increases

The other variable selection criterion, Wold’s R, and then decreases. If the quality of the prediction
depends on the Prediction Sum of Squares (PRESS) decreases when the number of latent variables increases,
values in cross validation. An alternative when data set is this indicates that the model is overfitting the data.
large enough is to split the data into two types. The first Therefore, for a random model, it is critical to determine
set, called the model building set or the training set, is the optimal number of latent variables to be maintained to
used to develop the model. The second data set, called build the model. A straightforward approach is to stop
the validation or prediction set, is used to evaluate the adding latent variables as soon as the PRESS decreases
reasonableness and predictive ability of the selected [12]. And, as also mentioned by [16], the choice of the
model. This validation procedure is often called cross- number of latent variables, A, is a matrix rank problem
validation [25]. In this study, 5-fold cross-validation was which causes overfitting when A has been chosen too
used and PRESS values were determined each time large and underfitting when A has been chosen too small.
deleting one of the k-fold of observations and variables. Thus, in this simulation study, the performance of the
It is also possible to choose models based on leave-one- model selection criteria in PLSR models is investigated.
out cross validation. Nevertheless, this is computationally The  framework  for the simulation model was based
expensive. The PRESS value for the i  observation is as on  [13]  for  the problem of multiple response variables.th

follows: The paper’s simulation study was extended for various

(5) magnitudes for observation units to compare the

where the notation  is used for the fitted value. By the the  true number  of  latent variables was shown with
first subscript i, it is shown that it is a predicted value for A (A  A). The dimensions of predictor variables matrix
the i  case and by the second subscript (i), it is shown N × M was extended with M=6, 8, 10 and 12.th

that i  case is omitted when the regression function is The dimension of response variables matrix, Y, wasth

fitted. The smaller PRESS value shows that it is the best chosen as Y, K=4 and N; and the observation units were
model to predict. In some cases, PRESS should reach a chosen as 100, 250, 500 and 1000. Matlab codes were
minimum and begin to rise again. Wold’s R can be written for 5-fold cross validation in Modified Kernel
calculated from the PRESS values. It can be explained as Algorithm #2. The simulation experiments were repeated
follows: 10,000 times for all design matrices. All these data

(6) matrix, X, was generated as follows:

where PRESS(a) denotes the PRESS value including the (7)
first a latent variables. Wold’s R criterion terminates when
R is greater than unity or a given threshold and, hence,
A=a and adjusted Wold’s R criterion terminates when R where r  and E were generated as mutually independent
is greater than a given threshold, A=a [13]. normal variables and  were generated as normalized

In this paper, three threshold values, 1 for Wold’s R orthogonal and unit vectors. var(r ) + var(e ) is the
criterion and 0.90 and 0.95 for adjusted Wold’s R criterion, largest eigenvalue of cov(X). The components of X matrix
were used. If R value is greater than one of these are given in Table 1.
threshold values, this means that no additional latent Response variables matrices, Y, were generated from
variable will be included in the PLSR model. If it provides Equations (8) and (9). These equations are shown as
significant predictions, this means that R value is smaller follows:

dimensions for predictor variables matrix and various

performances  of  model  selection criteria. In this study,

* *

generations were based on the PLS model. Predictor data

a

a

1 m
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Table 1: The components of X matrix

Dimension of data matrix R E

N × M R = [r , r , r , r ], a = 1,2,3,4 E = [e , e , …, e ], m = 1,…,M1 2 3 4 1 2 m

were generated as were generated as
mutually independent normal variables mutually independent random variables with mean
with mean zero and, zero and, var(e ) = 0.01.m

var(r ) = 101

var(r ) = 52

var(r ) = 23

var(r ) = 0.54

Table 2: The generated values fot 

Dimension of data matrix

N × K  = [ , , , ] was genrated from multivatiate normal distribution with mean zero and following1 2 3 4

variance-covariance matrix;

Table 3: The generated data F for Y

Dimension of data matrix F

N × K F = [f , f , f , f ], a = 1,2,3,41 2 3 4

were generated as mutually independent normal variables with mean zero and
var(f ) = 0.251

var(f ) = 0.1252

var(f ) = 0.053

var(f ) = 0.01254

Table 4: VIF values for N × 6

Predictors X X X X X X1 2 3 4 5 6

VIF 534.4 526.7 1009.8 661.9 621.4 866.9

Table 5: Relative cummulative variances of X and Y for N × 6

Number of Latent Variables
-------------------------------------------------------------------------------------------------------------------------------------------------------

True Model Blocks 1 2 3 4 5 6

A  = 4 X-block 0.53055 0.87616 0.96319 0.99984 1.00000 1.00000*

Y-block 0.94539 0.96692 0.97603 0.97634 0.97690 0.97700

(8) were generated. After generating all data sets, the

(9) whether  there  was  multicollinearity  or not. The VIF

where E and F are the residuals of X and Y after extracting values for VIF indicating a high degree of
the first A pairs of latent variables.  was generated from multicollinearity.
a multivariate normal distribution, while  were Table 5 gives the cumulative variances that explained
generated as normalized orthogonal vectors. z  = r  + f the variations of latent variables in both predictor anda a a

were generated as independent normal variables. response variables for N × 6 design matrix.

Table 1, Table 2 and Table 3 show how data matrices

variance inflation factor (VIF) was calculated for N × 6
latent  variables  in  Minitab packet program to see

values are shown only for N × 6 in Table 4, with the high
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The analysis showed that for the other-sized design number of latent variables close to the number of
matrices, both the VIF values were high as N × 6 and the predictor variables for N=100 except for Wold’S R_1,
number of latent variables was the same with N × 6. So, Wold’S R_2 and Wold’S R_3 criteria for M=10. All criteria
A* = 4 was taken as the true number of latent variables. find these numbers for latent variables with a higher

RESULTS AND DISCUSSION Wold’s R_1 finds the number of latent variables as seven

The selecting numbers of latent variables were percentage value to the value, with which the number of
obtained for each simulated data set using model latent variables is found as 2 with the largest percentage.
selection criteria from PLSR models. The performance of In the same case, Wold’s R_2 and Wold’s R_3 find the
the five procedures, M , M , Wold’s R_1, number of latent variables as ten with 80.23% and 91.83%,AKAKIE BEDRICK

Wold’s R_2 and Wold’s R_3 criteria, across 10,000 respectively and this is the figure with the closest
simulated  data  sets  are  summarized  in  Figures 1 to 5. percentage value to the value, with which the number of
Ten thousand data sets were generated for each latent variables is found as 2 with the largest percentage.
dimension of predictor variables, M=6,8,10,12 and each Figure 2 shows that M  and M  find the
observation unit, N=100,250,500,1000. For each plot in number of latent variables with a larger number when
Figure 1, the y-axis is the number of latent variables and observation units are increased. For this case, all Wold’s
the  x-axis  is the percentage of model selection criteria. R criteria find the number of latent variables as the true
The percentage values show the percentage of maximum number of latent variables, A = A  = 4 with 100%. M
iteration number for latent variables for each case in finds the number of latent variables with higher
10,000 repetitions. For example, the performance of M percentages than M . In this case, Wold’s R criteriaAKAKIE

is 53.23% ((5323/10,000)*100) when N=100 and M=6. are the best because of finding the true number of latent
For each plot in Figure 1, the y-axis is the number of variables.

latent variables and the x-axis is the percentage of model Wold’s R criteria find different numbers of latent
selection criteria. The percentage values show the variables as the number of latent variables when
percentage of maximum iteration number for latent observation units increase and M=8. M  and M
variables for each case in 10,000 repetitions. For example, work with larger numbers of latent variables as the number
the performance of M  is 53.23% ((5323/10,000)*100) of latent variables. They find the number of latentAKAKIE

when N=100 and M=6. variables as 8 with an increasing percentage with
Figure 1(a-d) shows that the true number of latent increasing observation numbers. The percentage values

variables is obtained by all criteria for small design matrix for M  are 79.72%, 99.98% and 100% for the rest. The
as in Li and Morris (2002), A = A  = 4. When the number percentage values for M  are 53.93%, 99.93% and*

of  predictor  variables  is  increased,  all   criteria   find  the 100% for the rest.

percentage value than the other numbers. Only for M=10,

with 50.24% and this is the figure with the closest

AKAIKE BEDRICK
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Fig. 1(a-d): All criteria for changing M and fixed N. A*=4
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Fig. 2: Model selection criteria for M=6 and varying N. A*=4

Fig. 3: Model selection criteria for M=8 and varying N. A*=4

Fig. 4-a: Model selection criteria for M=10 and varying N

Fig. 4-b: Model selection criteria for M=10 and varying N

Fig. 5 (a-b) Model selection criteria for M=12 and varying N



Europ. J. Appl. Sci., 4 (6): 257-264, 2012

263

As seen from Figure 4 (a-b), M  and M MAIC in working with small numbers for the number ofAKAIKE BEDRICK

show the same tendency to find the number of latent latent variables. Especially, Wold’s R_2 and Wold’s R_3
variables. They found the number of latent variables as 9 work with a less number than Wold’s R_1. In conclusion,
from small observation units. When the numbers of it is noted that experimental results clearly demonstrated
observations get larger, these criteria work with the same an excellent performance of MAIC from Bozdogan and
number of predictor variables as the number of latent Bedrick and Tsai in N × 6 when N=100. However, for
variables. Nevertheless, WOLD’S R criteria exhibit a higher-dimensional data matrices, all model selection
different situation. Wold’s R_2 and Wold’S R_3 work criteria have a tendency to find the number of latent
with  small  and the same numbers as the number of latent variables close to the number of predictor variables.
variables; however, Wold’s R_1 shows a discrepancy for These results suggest that MAIC and Wold’s R criteria
different numbers of observations. Nevertheless, all are affected by variations in the dimensions of regression
Wold’s R criteria work with a small number of latent models and observation numbers in selecting the true
variables. Wold’s R_2 and Wold’s R_3 are more sensitive model.
than Wold’s R_1 in finding the number of latent variables
due to low threshold values. In the low threshold value, Notations:
it is more powerful to select the (a)th latent with regard to
(a+1)th latent variable. a Index of latent variables

Figure 5 (a-b) shows that M  and M  work A Number of latent variables in PLS modelAKAKIE BEDRICK

with an increasing number for the number of latent i Index of observation units
variables for increasing observation number, but Wold’s N Number of observations
R criteria have variability in finding the number of latent M Number of predictor variables (m=1,2,…,M)
variables for increasing observation number. K Number of response variables (k=1,2,…,K)

CONCLUSION (N × M)

This study is based on the comparison of the (N × K) 
performances of MAIC from Bozdogan and Bedrick and E Matrix of X residuals (N × M)
Tsai and Wold’s R criterion for various dimensions of F Matrix of Y residuals (N × K)
data matrices in finding the true number of latent t J  latent variable for X in PLS model
variables. The simulation results show that all criteria u J  latent variable for Y in PLS model
achieved  the  true  number   of   latent   variables  for p X loading vector of latent variable j (M × 1) in
small-sized design matrices. However, the results for the PLS model
other-sized design matrices greatly varied and they q Y loading vector of latent variable j (K × 1) in
consistently showed different numbers for the number of PLS model
latent variables. Generally, it can be said that when w X weight of component j (M × 1) in PLS
observation numbers increase, PLS creates a model with model
a high number of latent variables, which is statistically r Latent variable in simulation study,
significant. The simulation studies also show that Wold’s approximately equal to t  in PLS regression
R  criterion  is effective for a N × 6 design matrix. That is, model
it gave the same result as in [13] when the data were Approximately equal to p  in PLS regression
generated according to their paper. Nevertheless, when model
the data were generated according to the assumptions of Approximately equal to q  in PLS regression
PLSR, it seemed that Wold’s R criterion did not give model
desirable results in higher-dimensional data. MAIC from M MAIC from Bozdogan (2000).
Bozdogan and Bedrick and Tsai found almost the same M MAIC(a) from Bedrick and Tsai (1994).
results  as  the  number  of  latent  variables,  but they
could not find the true number of latent variables for In  this  paper,   uppercase   bold  characters
higher-dimensional data. Simulation studies also showed represent matrices and lowercase bold variables represent
that Wold’s R criterion was almost more sensitive than vectors.

X Matrix of predictor variables with dimension

Y Matrix of response variables with dimension

j th
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j
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a j
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