Cytotoxic Activity Evaluation of *Euphorbia granulata* Forssk

Mohammad Parvez, Farukh Hussain, Bashir Ahmad, Javid Ali and Said Hassan

Centre of Biotechnology and Microbiology, University of Peshawar, KPK-Pakistan
Department of Botany University of Peshawar, KPK-Pakistan
PCSIR Laboratories Complex, Peshawar, KPK-Pakistan

Abstract: *Euphorbia granulata* Forssk is a medicinal plant used in many countries for treating different ailments. The present investigations were focused on cytotoxic activity of this plant using brine shrimp lethality bioassay. 2% lethality was recorded with negative control and 0.01mg/ml while no lethality occurred with 0.1 and 1.0mg/ml of extracts. The lowest toxic level (2.5% lethality) noted was 2mg/ml while the high toxic level (97.5% lethality) was 25mg/ml. The extract had LD$_{50}$ of 16.21mg/ml against brine shrimp larvae. The overall results suggest that the extracts had no toxicity at standard concentrations, but toxic at high dose above 2 mg.

Key words: *Euphorbia granulata* • Cytotoxicity • Lethality • Brine Shrimp

INTRODUCTION

Cancer cells proliferate at the expense of normal body cells and ultimately damage the surrounding tissues leading to malfunction of organ and ultimately death [1, 2]. After coronary diseases cancer is the leading cause of death and according to an estimate 10 million cases of different forms of cancer are reported every year [3]. Toxicity of chemotherapeutic agents to brine shrimp nauplii has direct correlation with human nasopharyngeal carcinoma [4]. Originally developed for the insecticidal potential of a product the brine shrimp lethality assay is now a day’s an easy, time saving, effective and internationally accepted method for screening anticancer potential [5].

To see the cytotoxic effect of plant extract [6] used MTT cancer assay for oil extract from *Croton matourensis* and *Croton nicans* against LoVo, X-17 (colon carcinoma). It was seen that HeLa cancer and control normal cell showed moderate cytotoxic effects only against cancerous cells and not against control. It was reported [7] that essential oil from *Origanum majoricum*, *Origanum compactum* and *Origanum applii* showed cytotoxicity against brine shrimp with LD$_{50}$ value of 10 to 29 ppm as compared to aqueous extracts which showed LD$_{50}$ equal to water (negative control), clearly indicates the cytotoxicity of the aqueous extract. Ethanolic extract from different parts of *Polyalthia longifolia*, *Trachyspermum ammi* and *Elaeocarpus serratus* when used against brine shrimp larvae proved cytotoxic with mild to moderate effect [8]. *Viscum articulatum* collected from five different plants was extracted with ethanol were used against brine shrimp larvae. All the five extracts showed very potent effects at 1000µg/ml against the brine shrimp larvae [5].

Essential oils [9] from leaves of *Cymbopogon citratus* had pronounced cytotoxic effect at low dose (150µl/ml) as compared to *Cymbobogon nardus* which appeared comparatively less cytotoxic at higher doses (450µl/ml). A similar study [10] on Iranian medicinal plants stated that methanolic extracts showed cytotoxicity against MCF7 cells. Sixteen plants from Bangladesh [11] with water, dichloromethane, n-hexane and methanol for their cytotoxicity against mouse fibroblasts (normal), humane gastric, colon and breast (cancerous) cells. It was noted that extracts of *Linnophila auriculata* (aqueous), *Hygrophila auriculata*, *Hibiscus tiliaceous* (methanolic) were cytotoxic against breast cancerous cells but were not active against normal mouse fibroblasts. Other plants extract showed low or no activity while *Bhumea lacera* (extracted with methanol) was the most potent (IC$_{50}$ 0.01 to 0.08 µg/ml) of all the plants studied. The study of Merghoub [12] reported that extracts from *Ormensis mixta*, *Retama monosperma* and *Inula viscosa* showed remarkable cytotoxic activity against two cell lines.
MATERIALS AND METHODS

Brine shrimp lethality assay (BSA) used by McLaughlin and Rogers [13] was followed with some adjustments. Artificial sea water (ASW) was prepared by 3.8 grams of sea salt in 100 ml of distilled water.

Eggs Hatching: A 20 × 8 cm light proof tray was divided with perforated plastic band into two 1:3 unequal portions. The tray was filled with enough ASW to cover the hole in the partition wall. The entry of light to larger part was blocked with a plastic cover. 10 mg of Brine shrimp (Artemia salina) eggs were added to the larger portion of the tank and covered with a lid to prevent light. The open end of the tank was illuminated with lamp so that phototrophic nauplii (Brine shrimp larvae) may move towards the light through the pore in the partition. The setup was left to hatch at room temperature for 48 hrs.

Technique: 100 ml ASW was prepared in a beaker, filtered and poured into the water tank. From stock solution (100 mg/ml) of E. granulata, three dilutions of 5000 µg, 500 µg and 50 µg/ml in DMSO were prepared. 1 ml from each of the above samples was poured into test tubes and allowed to evaporate to dryness. After dryness 3 ml of ASW was added into each test tube and 10 nauplii were added with the help of disposable Pasteur pipette.

The final volume in a test tube was raised to 5 ml with ASW so that the tube contain 1000, 100 and 10 µg/ml of test samples. 0.30 mg/ml potassium dichromate was used as positive control while DMSO as negative control. The experiment was performed in five replicate and was left at room temperature for 24 hrs. After 24 hrs the nauplii in positive control, negative control and test sample were counted in all test tubes and percent toxicity calculated.

RESULTS AND DISCUSSION

The Table 1 given below shows the results of the brine shrimp lethality bioassay. Table 2 summarizes the toxicity levels of plant extracts. The high toxic level determined was 25 mg/ml where 97.5% naupli deaths recorded while the lower toxic level noted was 2 mg/ml with 100% survival. For this plant 16.21 was investigated as the LD50 (Table 1).

Fifty naupli were used in the experiment and only 2% mortality was recorded for negative control (DMSO) and 0.01 mg/ml of extract concentration. 100% survival was observed for 0.1 and 1.0 mg/ml of extract doses. Literature shows that there is a direct correlation between toxicity of a therapeutic agent to brine shrimps nauplii and human nasopharyngeal carcinoma [4]. Cytotoxic property of natural products is also linked to its anticancer potential [14, 15]. For investigating anticancer potential of natural

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NC</th>
<th>Extract concentration used</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of nauplii used</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nauplii survived</td>
<td>49</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>Dead nauplii</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Percent survival</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>LD₅₀ (µg/ml)</td>
<td>-</td>
<td>16.21</td>
<td>16.21</td>
</tr>
<tr>
<td>Upper toxic concentration</td>
<td>-</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Lower toxic concentration</td>
<td>-</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The experiment was performed in five replicates for each dilution, NC = negative control, PC = positive control

Note. Log value against probit 5 was 1.21 and its antilog value was 16.21 (LD50)

Table 2: LD₅₀ Calculations for Euphorbia granulata for Brine Shrimps Larvae

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg)</th>
<th>Log of dose</th>
<th>Total naupli</th>
<th>Dead naupli</th>
<th>Percent dead</th>
<th>Corrected percentage</th>
<th>Probit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>0.30</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>3.04</td>
</tr>
<tr>
<td>2</td>
<td>8.0</td>
<td>0.90</td>
<td>50</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>4.82</td>
</tr>
<tr>
<td>3</td>
<td>14.0</td>
<td>1.15</td>
<td>50</td>
<td>17</td>
<td>34</td>
<td>34</td>
<td>4.59</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>1.30</td>
<td>50</td>
<td>38</td>
<td>76</td>
<td>76</td>
<td>5.71</td>
</tr>
<tr>
<td>5</td>
<td>25.0</td>
<td>1.40</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>97.5</td>
<td>6.96</td>
</tr>
</tbody>
</table>
products one or two anticancer activities are coupled and usually antitumor and cytotoxic activities follow each other [16]. In the present study standard concentrations of 10 µg, 100 µg and 1000 µg proposed by McLaughlin and Rogers [13] were used for cytotoxic impact of the plant extracts. The results show that the ethanolic plant extracts were not lethal at all the three strengths. Similar results were achieved with negative control. However, the positive control (P-dichromate) produced 100% lethality. This suggests that the extract was not toxic at standard concentration proposed by McLaughlin and Rogers [13].

In a separate experiment toxic concentrations of the extract ranged from 1 to 40 mg/ml were determined. The least tolerable level (100% deaths) was noted with 25 mg/ml. The maximum concentration at which no death occurred was taken as highest tolerable level. Thus highest tolerable level determined was 2 mg/ml. After applying the correction factor for both high deaths and lowest death percentage the actual value come out to be 97.5% and 2.5%. Using these and probit values (Table 3), LD$_{50}$ was determined. Using graphpad prism software 16.21 was determined as LD$_{50}$ for the extract as shown in the figure 1. This suggests that the extract is not toxic for brine shrimps. Previously antitumor activity was carried out for _E. granulata_ which showed no inhibition of tumor growth.

CONCLUSION

Hence the overall results suggest the non-cytotoxic nature of _Euphorbia granulata_. It further suggests that plant is safe for human consumption even if taken in higher doses.

ACKNOWLEDGMENT

We (authors) appreciative Center of Biotechnology and Microbiology, University of Peshawar, KPK-Pakistan for experimental work support.

REFERENCES

