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Abstract: The present study aims to utilize an Artificial Neural Network (ANN) to modeling the rainfall-
runoff relationship in a catchment area located in a semiarid region of Iran. The paper illustrates the 
applications of the feed forward back propagation for the rainfall forecasting with various algorithms with 
performance of multi-layer perceptions. The monthly stream of Jarahi Watershed was analyzed in order to 
calibrate of the given models. The research explored the capabilities of ANNs and the performance of this 
tool would be compared to the conventional approaches used for stream flow forecast. Efficiencies of the 
gradient descent (GDX), conjugate gradient and Levenberg-Marquardt (L-M) training algorithms are 
compared to improving the computed performances. The monthly hydrometric and climatic data in ANN 
were ranged from 1969 to 2000. The results extracted from the comparative study indicated that the 
Artificial Neural Network method is more appropriate and efficient to predict the river runoff than classical 
regression model.
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INTRODUCTION

Rainfall-runoff models play an important role in 
water resource management planning and therefore,
different types of models with various degrees of
complexity have been developed for this purpose.
These models, regardless to their structural diversity 
generally fall into three broad categories; namely, black 
box or system theoretical models, conceptual models 
and physically-based models [1]. Black box models 
normally contain no physically-based input and output 
transfer functions and therefore are considered to be 
purely empirical models. Conceptual rainfall-runoff
models usually incorporate interconnected physical
elements with simplified forms and each element is 
used to represent a significant or dominant constituent 
hydrologic process of the rainfall-runoff transformation 
[2]. Conceptual rainfall-runoff models have been
widely employed in hydrological modeling. Some of
the well-known conceptual models include the Stanford 
Watershed Model (SWM) [3], the Sacramento Soil
Moisture Accounting (SAC-SMA) model [4], the
Xinanjiang Model [5-7], the Soil Moisture Accounting 
and  Routing  (SMAR) Model [8, 9] and the Tank 
Model [10, 11]. Conceptual models are reliable in
forecasting the most important features  of the
hydrograph [12, 13]. In comparison with the black box 
models, conceptual models have potential for
evaluating land-use impact on hydrological processes 

based on relationships of the model parameters to 
measurable physical characteristics and development
[2]. It seems reasonable to expect that conceptual
models would prove to be more faithful in simulating 
rainfall-runoff process due to its physical basis.

There has been a tremendous growth in the interest 
of application the ANNs in rainfall-runoff modeling in 
the 1990s [14-20]. ANNs were usually assumed to be 
powerful tools for functional relationship establishment 
or nonlinear mapping in various applications. Cannon 
and Whitfield [21], found ANNs to be superior to linear 
regression procedures. Shamseldin [22], examined the 
effectiveness of rainfall-runoff modeling with ANNs by 
comparing their results with the Simple Linear Model 
(SLM), the seasonally based Linear Perturbation Model 
(LPM) and the Nearest Neighbor Linear Perturbation 
Model (NNLPM) and concluded that ANNs could
provide more accurate discharge forecasts than some of 
the traditional models. The ability of ANNs as a
universal approximator has been demonstrated when 
applied to complex systems that may be poorly
described or understood using mathematical equations; 
problems that deal with noise or involve pattern
recognition, diagnosis and generation; and situations 
where input is incomplete or ambiguous by nature [17]. 
An excellent overview of the preliminary concepts and 
hydrologic applications of ANNs was provided by the 
ASCE Task Committee on Artificial Neural Networks 
in Hydrology [23, 24].
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While the capability of ANNs to capture
nonlinearity in the rainfall-runoff process remains
attractive features comparing with other modeling
approaches [14], ANN models as illustrated in
numerous previous studies, essentially belong to system 
theoretical (black box) model category and bear the
weaknesses of this category [25]. The formation of
ANN model inputs usually consists of meteorological 
variables, such as rainfall, evaporation, temperatures 
and snowmelt; and geomorphological properties of the 
catchment, such as topography, vegetation cover and 
antecedent soil moisture conditions. The frequently 
used inputs to ANNs also include observed runoff at 
nearby sites or neighboring catchments. In many cases, 
network inputs with or without time lags may also be 
considered in scenario analysis. Nevertheless, as
concluded in previous studies, the lack of physical
concepts and relations has been one of the major 
limitations of ANNs and reasons for the skeptical
attitude towards this methodology, (ASCE Task
Committee on Artificial Neural Networks in Hydrology 
[23, 24]. Despite that, the nonlinear ANN model
approach is capable of providing a better representation
of the rainfall-runoff relationship than the conceptual 
Sacramento soil moisture accounting model, also the 
ANN approach is by no means a substitute for
conceptual watershed modeling since it does not
employ physically realistic components and parameters
[14]. Therefore, instead of using ANNs as simple black 
box models, the development of hybrid neural networks 
has received considerable attention [26-28]. The hybrid 
neural networks has shown the potential of obtaining 
more accurate predictions of process dynamics by 
combining mechanistic and neural network models in 
such a way that the neural network model properly 
accounts for unknown and nonlinear parts of the
mechanistic model [26].

MATERIALS AND METHODS

Overview of artificial neural networks: An ANN is a 
highly interconnected network of many simple
processing units called neurons, which are analogous to 
the biological neurons in the human brain. Neurons 
having similar characteristics in an ANN are arranged 
in groups called layers. The neurons in one layer are 
connected to those in the adjacent layers, but not to 
those in the same layer. The strength of connection 
between the two neurons in adjacent layers is
represented by what is known as a ‘connection strength’ 
or ‘weight’. An ANN normally consists of three layers, 
an input layer, a hidden layer and an output layer. In a 
feed-forward network, the weighted connections feed 
activations  only  in the forward direction from an input

Fig. 1: Structure of a feed-forward ANN

layer to the output layer. On the other hand, in a 
recurrent  network  additional  weighted  connections 
are used to feed previous activations back to the
network. The structure of a feed-forward ANN is
shown in Fig. 1.

An important step in developing an ANN model is 
the determination of its weight matrix through training. 
There are primarily two types of training mechanisms, 
supervised and unsupervised. A supervised training 
algorithm requires an external teacher to guide the
training process. The primary goal in supervised
training is to minimize the error at the output layer by 
searching for a set of connection strengths that cause 
the ANN to produce outputs that are equal to or closer 
to the targets. A supervised training mechanism called 
back-propagation training algorithm [29, 30] is
normally adopted in most of the engineering
applications. Another class of ANN models that employ 
an ‘unsupervised training method’ is called a self-
organizing neural network. The most famous self-
organizing neural network is the Kohonen’s Self-
organizing Map (SOM) classifier, which divides the
input-output space into a desired number of classes. 
Once the classification of the data has been achieved by 
using a SOM classifier, the separate feed forward MLP 
models can be developed through considering the data 
for each class using the supervised training methods. 
Since the ANNs do not consider the physics of the 
problem, they are treated as black-box models;
however, some researchers have recently reported that 
it is possible detect physical processes in trained ANN 
hydrologic models [31-33].

The artificial neural network structure: Network
structure includes input and output dimensions, the 
number of hidden neurons and model efficiency
calculations. In this study, input dimension includes 
monthly stream flow, rainfall and average air
temperature data for time step t. Output dimension is 
the predicted stream flow at time t+1. Only one hidden 
layer was used. This has been shown to be sufficient in 
a number of studies [34-36]. The appropriate number of 
neurons  in  the  hidden layer is determined by using the
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constructive algorithm [36], by increasing the number 
of neurons from 2 to 20. There is a use of log-sigmoid,
tangent-hyperbolic and linear activation functions. The 
ANN model for stream flow evaluation was written in 
the MATLAB environment, version 7. The L-M
algorithms were evaluated for network training so that 
the algorithm with better achieved accuracy and
convergence speed could be selected. In order to
provide adequate training, network efficiency was
evaluated during the training and validation stages, as 
suggested by Rajurkar et al. [34]. In this case, if the 
calculated errors of both stages continue to decrease, 
the   training   period  is  increased.  This  is  continued 
to the point of the training stage error starting to 
decrease, but the validation stage error starting to 
increase. At this point training is stopped to avoid 
overtraining and optimal weights and biases are
determined. Capability of the stream flow generation 
model during either training or validation stage can be 
evaluated by one of the commonly used error
computation functions [34, 35].

Network training algorithms: The Back-propagation
(BP) algorithm [37], has been the most commonly used 
training algorithm. A temporal BP neural network
(TBP-NN) was used by Sajikumar and Thandaveswara 
[18] for rainfall-runoff modelling with limited data. Hsu 
et al. [14] proposed the Linear Least-squared Simplex 
(LLSSIM) for the training of ANNs. The CG algorithm 
has also been used to train ANNs by several researchers 
including Shamsedin [22]. In a study by Chiang et al.
[35], the CG algorithm was found to be superior when 
compared with the BP algorithm in terms of the
efficiency  and  effectiveness  of  the  constructed 
network. In more recent studies the L-M algorithm is 
also being used due to its superior efficiency and high 
convergence speed [38, 39]. All commonly used
algorithms for network training in hydrology, i.e. BP, 
CG and L-M algorithms apply a function minimization 
routine, which can back propagate error into the
network layers as a means of improving the calculated 
output. Here is the corresponding equation [40].

k k 1 k k kp+∆χ = χ − χ = α (1)

where: xk is the current estimation point for a function 
G(x) to be minimized at the kth stage, pk is the search 
vector and αk is the learning rate, a scalar quantity 
greater than zero. The learning quantity identifies the 
step size for each repetition along pk. Computation of pk
will depend on the selected learning algorithm. In the 
present research, the L-M algorithm is compared with 
the CG and GDX algorithm. When compared with the 
steepest  gradient  and the Newton’s methods, the CG is 

viewed as being faster than the steepest gradient, while 
not requiring the complexities associated with
calculation of Hessian matrix in the Newton’s method. 
The CG is something of a compromise; it does not 
require the calculation of second derivatives, yet it still 
has the quadratic convergence property. It converges to 
the minimu m of a quadratic function in a finite number 
of iterations [40]. On the other hand, the L-M algorithm 
is viewed as a very efficient algorithm with a high 
convergence speed. In correspondence with Eqn (1) the 
following equation is used as the function minimization
routine in the L-M procedures [40].

1
k 1 k k kA g−
+χ = χ − (2)

in which gk and Ak are the first and the second 
derivative of G(x) with respect to x. The function
minimization routine is further described [40].

k 1 k
k

1 G( )
2+χ = χ − ∇ χ
µ

(3)

In this equation, if the value of coefficient mk is 
decreased to zero the algorithm becomes Gauss-
Newton. The algorithm begins with a small value for µk
(e.g. µk = 0.001). If a step does not yield a smaller value 
for G(x), the step is repeated with µk multiplied by a
factor greater than one (e.g. 10). Eventually G(x)
decreases, since we would be taking a small step in the 
direction of the steepest descent. If a step does produce 
a smaller value for G(x), then it is divided by the
specified factor (e.g. 10) for the next step, so that the 
algorithm will approach Gauss-Newton, which should 
provide faster convergence. The algorithm provides a 
neat compromise between the speed of Newton’s
method and the guaranteed convergence of steepest 
descent.

Study site description: The purpose of this section is 
to briefly describe the study area and the structure of 
the utilized ANN. The proposed methodologies were 
applied to the Jarahi watershed system (Fig. 2) for the
evaluation of the predication rainfall-runoff. Modeling 
capabilities of the GDX, CG and the L-M algorithm
were compared in terms of their abilities in network 
training. Also, there has been an evaluation of the
influences of monthly rainfall, stream flow and air
temperature data as different input dimensions. The
Jarahi watershed with a drainage area of 24/310 squire 
km is located in Ahvaz the southern region of
Khuzestan province in Iran, which supplies water for 
agricultural, drinking and industrial purposes. The
Jarahi watershed system discharges into the Alah River 
and  Maroon River. The sources of water include spring



Am-Euras. J. Agric. & Environ. Sci., 5 (6): 856-865, 2009

859

Fig. 2: DEM and river network map of the study area

discharge and individual rain events. The rainy season 
is limited to a 9 month period despite the continuous 
stream flow system (October-April). The mean annual 
precipitation is about 400 mm. Rain events usually last 
several days, although rainfall durations of 1 day or less 
do occur.

The used data included monthly recorded rainfall
from the rain-gauges of Mashregh, Shohada, Gorg,
Shadegan and Shoe; Shadegan, Shoe temperature data 
and Mashregh, Behbahan and Gorg stream flow as well. 
Duration of these recorded data was 17 years from 1983 
to 2000. A number of ANN models were designed and 
evaluated for their capability on stream flow prediction. 
Computational efficiencies of the GDX, CG and L-M
algorithms and the effect of enabling/disabling of input 
parameters (various combinations of stream flow,
rainfall and average air temperature) were also
evaluated.

Data  preparation:  Data  on  steam  flow  was limited 
to a 17-yr period, then this period of record was used 
for model development by considering different
combinations of inputs variables, e.g. rainfall, stream
flow and average air temperature. For each one of the 
developed models available data were separated as 80% 
for training and 20% for validation. Additional analysis 
for the detection of network overtraining was not
necessary in this research as the number of data points 
was  more  than  the  number  of parameters used by the 

network (weights and biases). So data could be divided 
into two parts for use in the training and validation 
stages [41]. Data usage by an ANN model typically 
requires data scaling. This may be due to the particular 
data behavior or limitations of the transfer functions. 
For example, as the outputs of the logistic transfer
function are between 0 and 1, the data are generally 
scaled in the range 0.1-0.9 or 0.2-0.8, to avoid problems 
caused by the limits of the transfer function [36] In the 
present  paper, the data were scaled in the range of _1 
to +1, based on the following equation: 

0 min
n

max min

p p
p 2( ) 1

p p
−

= −
−

(4)

in which, p0 is the point observed data, pn is scaled data 
and pmax, pmin are the maximum and minimum observed 
data points. The above equation was used to scale 
average of air temperature, as well stream flow and 
rainfall data in order to provide consistency for the 
analysis. Then the unit of the scaled pn would
correspond to individual data set. Burden et al. [42] 
suggested that before any data preprocessing is carried 
out, the whole data set should be divided into their 
respective subsets (e.g. training and validation). In this 
study, the sub-routines 2 section available in the Neural 
Network Toolbox of MATLAB were utilized for
normalization of the training data set, the
transformation   of   the   validation   data   set   and  the 
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un-normalization of the network output. The routine 
normalizes the inputs and targets between-1 and 1, so 
that they will have zero mean and unit standard
deviation. The validation data set was normalized with 
the mean and standard deviation, which were computed 
for the training data set. Finally, the network output was 
un-normalized and a regression analysis was carried out 
between the measured data and their corresponding un-
normalized predicted data.

Evaluation criteria for ANN prediction: The
performances of the ANN are measured with four
efficiency terms. Each term is estimated from the
predicted values of the ANN and the measured
discharges (targets) as follows:

• The correlation coefficient (R-value) has been
widely used to evaluate the goodness-of-fit of
hydrologic and hydrodynamic models [43]. This is 
obtained by performing a linear regression between 
the ANN-predicted values and the targets and is 
computed by

N

i i
i 1

n n
2 2
i i

i 1 i 1

t p
R

t p

=

= =

=
∑

∑ ∑

where R is correlation coefficient; N is the number 
of samples; i it T T= − ; i iP P P= −  and Ti and Pi are 
the target and predicted values for i=1,….,N and 
T and P are the mean values of the target and 
predicted data set, respectively. [Note that a case 
with R is equal to 1 refers to a perfect correlation 
and the predicted values are either equal or very 
close to the target values, whereas there exists a 
case  with  no  correlation  between the predicted 
and the target values when R is equal to zero. 
Intermediate values closer to 1 indicate better
agreement between target and predicted values
[43].

• The ability of the ANN-predicted values to match 
measured data is evaluated by the Root Mean 
Square Error (RMSE). It is defined [44].

N
2

i i
i 1

1RMSE (T P)
N =

= −∑

Overall, the ANN responses are more precise if R, 
MSE and RMSE are found to be close to 1, 0 and 0, 
respectively. In the present study, MSE is used for 
network training, whereas R and RMSE are used in the 
network-validation phase.

Sensitivity of analysis
BPNN structure optimization: The crucial tasks in BP 
neural network modeling are to design a network with a 
specific number of layers, each having a certain number 
of neurons and to train the network optimally, so that it 
can map the system’s nonlinearity reasonably well.
Some researchers stressed that optimal neural network 
design is problem-dependent and is usually determined 
by a trial-and-error procedure, i.e. sensitivity of analysis 
[24, 36, 45].

Calibrations and validations: In neural network
methodology, learning, which extracts information
from the input data, is a crucial step that is badly 
affected  through  (1)  the  selection  of  initial weights 
and (2) the stopping criteria of learning [46, 47]. If a 
well-designed neural network is poorly trained, the
weight values will not be close to their optimum and the 
performance of the neural network will suffer. Little 
research has been conducted to find good initial
weights.  In  general,  initial  weight  is implemented 
with a random number generator that provides a
random value [46, 48]. In this study, the initial weights 
were  randomly  generated  between-1 and 1 [49]. To 
stop the training process, we could either limit the
number of iterations or set an acceptable error level for 
the training phase.

There is no guarantee that coefficients which are 
close to optimal values will be found during the
learning phase even though the number of iterations is 
capped at a predefined value. Therefore, to ensure that 
overtraining does not occur, we used three criteria to 
stop the training process: (a) RMSE is predefined and 
the training is conducted until the RMSE decreases to 
the threshold value. The idea is to let the system train 
until the point of diminishing returns, that is, until it 
basically cannot extract any more information from the 
training data [40, 46]. (b) Based on preliminary
examinations, it was observed that the neural network 
error decreases as low as threshold RMSE within 100 
epochs for good initial weights without overtraining; 
however, the threshold values may never be achieved 
for poor initial weights, even after a large number of 
epochs. (c) The minimum performance gradient (the
derivatives of network error with respect to those
weights and bias) is set to 1010. The termination of the 
training process of the network is justified because the 
BPNN performance does not improve even if training 
continues [40].

The training and validation procedures for specific 
network architectures were repeated in order to handle 
uncertainties of the initial weights and stopping criteria. 
In the preliminary investigation it was found that 10
trials    were    enough   to   find  the   best   result.   The 
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performance efficiencies of each trial were recorded 
and compared. The result with the highest R-value of 
the training data set is considered the optimal ANN 
prediction for the network.

Another important task is the division of data for 
the network training and validation phase. The ASCE 
Task Committee [24], reported that ANNs are not very 
capable at extrapolation. Thus, in the present study, 
care was taken to have the training data include the 
highest as well as the lowest values, i.e. the two
extreme input patterns. To ensure that the ANN is 
applicable to whole data set, about 40% of the total 
samples were chosen randomly from the rest of the data 
set for the validation phase. The stage and discharge 
records of the validation data are used for the rating 
curve prediction and comparison with ANN prediction. 

Effect of including stream flow descriptive data: As 
mentioned  in  section 2.2, from descriptive parameters, 

the USGS is able to record the stream stage
continuously. The stream width and cross-sectional area 
at the measuring station do not change often, thus these 
can be easily estimated from the stream stage and the 
topography of the measuring station. However, it often 
poses a difficult task to continuously record the mean 
velocity of the stream [50]. Therefore, the present study 
carried out the sensitivity of analysis for three input 
data sets: average rain fall, average temperature and 
average steam flow to forecast monthly stream flows at 
Jarahi watershed.

RESULTS AND DISCUSSION

Model structures: Three model structures were
developed to investigate the impact of variable
enabling/disabling of input dimension on model
performance. Model 1 is enabled for average
temperature  data  as  input  dimension  of  two stations, 
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Fig. 3: Comparison of convergence speeds for the gradient descent (GDX), Conjugate Gradient (CG) and

Levenberg-Marqurdt  (LM)  algorithms,  as  measured  by  number  of  neurons  during  validation  stage
for Model 1(a,a')-Model 2(b,b')-Model 3(c,c'); by(a,b,c) Correlation Coefficient (R), (a',b',c') root mean 
squared error (ERMS)
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Table 1: Result of model performance level during training and validation stage 
RMSE R
------------------------------------------------- -----------------------------------------------

Model Architecture LM CG GDX LM CG GDX

Model1 2-4-1 A 4.50 4.03 3.52 0.370 0.28 0.15
T 2.50 3.50 3.26 0.470 0.28 0.17

Model2 5-12-1 A 3.10 4.30 4.10 0.850 0.60 0.26
T 1.57 3.32 4.20 0.960 0.77 0.31

Model3 10-20-1 A 0.26 3.19 4.52 0.997 0.84 0.61
T 0.20 1.27 2.20 0.998 0.97 0.92

Where;  RMSE  is  root  means  squared  error  and R  is  correlation  coefficient.  In  Fig. 4a-c  are  indicated  a  comparison  of  predicated 
rainfall-runoff by different models
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Fig. 4: Comparison of predicated rainfall-runoff for the Calibrations and validations by different models; Model 
1(a,a')-Model 2(b,b')-Model 3(c,c') (a) Model 1; (b) model 2; (c) Model 3

model 2 is enabled for rain fall data as input dimension 
of five stations, model 3 is enabled for rainfall, average 
temperature and stream flow, Equations 8 to 10
represent model 1 to Model 3, respectively. Figure 3 is 
showing a competitive of convergence speeds

{ }sha Sho ShaQ(t 1) f T ,T+ = (8)

{ }sha M She Sho Sha GoQ(t 1) f P ,P , P ,P ,P+ = (9)

{ }sha M She Sho Sha Go Sho Sha m b GoQ(t 1) f P ,P ,P ,P ,P ,T ,T ,Q , Q , Q ,+ = (10)
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where; Q(t+1)shadegan is predicted rain fall-run off, for 
the time step of t+1; {Qm, Qb, QGo} is monthly rainfall-
runoff data of Mashregh, Behbahan and Gorg
hydrometric station; and {PM, PShe, PSho, PSha, PGo}, are 
monthly rainfall data of Mashregh, She, Shohada,
Shadegan and Gorg rain gauge stations for the time step 
of t and T(t)sho, T(t)sha, is average monthly air
temperature data at Shohada and Shadegan station for 
the time step of t. (Table 1).

Model performance levels: Table 1 shows individual 
model performance levels as measured by ERMS and R 
and individual model architecture as represented by the 
number of neurons in the input, output and hidden 
layers. Furthermore, computed rainfall-runoff by
individual models are compared with the corresponding 
observed values and illustrated by their graph (Fig. 4) 
which is indicated by the results, it can be concluded 
that model 1 resulted with the lowest achieved
performance levels. Disabling of Shohada, Shadegan 
stations rain gauge data, (model 2) resulted in a
considerable improvement of the performance levels. 
Sheilan, Shohada, Shadegan, Gorge stations rain gauge 
(model 3) it is possible for the rainfall, average
temperature and stream flow at the time of step t.

CONCLUSION

The Artificial Neural Network (ANN) models
show an appropriate capability to model hydrological 
process. They are useful and powerful tools to handle 
complex problems compared with the other traditional 
models. In this study, the results show clearly that the 
artificial neural networks are capable of model rainfall-
runoff relationship in the arid and semiarid regions in 
which the rainfall and runoff are very irregular, thus, 
confirming the general enhancement achieved by using 
neural networks in many other hydrological fields. In 
this research, the influences of training algorithm
efficiencies and enabling/disabling of input dimension 
on rainfall-runoff prediction capability of the artificial 
neural networks was applied. A watershed system in 
Ahvaz area in the south region of Iran was selected as 
case study. The used data in ANN were monthly
hydrometric and climatic data with 17 years duration 
from   1983   to  2000.  For   the   mentioned   model
14  year's  data  were  used  for  its  development  but 
for  the  validation/testing  of  the model 3 years data 
was  applied.  Three  model structures were developed 
to investigate the probability impacts of
enabling/disabling rainfall-runoff, rainfall, precipitation 
and the average air temperature input data. Efficiency 
of model 1 is enabled for average temperature data as 
input  dimension  with  using  two  stations, model 2 for 
rain   fall   with  using  five  stations  and  model   3  for

rainfall,  average  temperature  and  stream  flow  data
as input dimension with using six stations.
Computational efficiencies, i.e. better achieved
accuracy  and convergence speed, were evaluated for 
the gradient descent (GDX), Conjugate Gradient (CG) 
and Levenberg-Marquardt (L-M) training algorithms.
Since the L-M algorithm was shown to be more
efficient than the CG and GDX algorithm, therefore it 
was used to train the proposed tree models. Based on 
the results validation stage of Root Mean Square Error 
(RMSE) and coefficient of determination (r) measures 
were: 2.5, 0.47 (model 1); 1.57, 0.96 (Model 2); 0.2,
0.998 (Model3). As indicated by the results, model 3 
provided the highest performance. This was due to 
enabling of the rainfall, average temperature and stream 
flow data, resulting in improved training and thus
improved prediction. The results of this study has 
shown that, with combination of computational
efficiency measures and ability of input parameters 
which describe physical behavior of hydro-climatologic
variables, improvement of the model predictability is 
possible in artificial neural network environment.
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