Sequence Tagged Site (STS) Analysis of Y-chromosome Micro Deletions in Environmental Tobacco Smokers [ETS] in Tamil Nadu, India

¹C.P. Rajneesh, ¹C. Satish Kumar, ²A. Manimaran, ¹A. Ahmed Khan, ¹Julekha Dey, ¹Omita Yengkhom, ¹Gurram Vasudev, ¹P.P. Vijaya, ¹J. Sugumaran and ¹S. Manivannan

¹P.G. and Research Department of Mohamed Sathak College of Arts and Science, Shollinganallur, Chennai-600119, Tamil Nadu, India ²Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India

Abstract: Azoospermia factor locus (AZF) is assumed to contain the genes responsible for spermatogenesis. Deletions in these genes are thought to be pathologically involved in some cases of male infertility associated with azoospermia or oligozoospermia. An attempt was made to establish the prevalence of micro-deletions on the Y chromosome in 180 Environmental Tobacco Smokers [ETS] Tamil Nadu, India. Polymerase chain reaction (PCR) micro-deletion analysis was done in 180 EST males including control. For this, genomic DNA was extracted from the peripheral blood. Seven sets of STS primers were used to amplify the samples encompassing AZFa, AZFb and AZFc regions.

Key words: Environmental Tobacco Smokers (ETS) • STS primers • Azoospermia factor • Micro-deletion • Polymerase chain reaction (PCR)

INTRODUCTION

Reproductive health is a state of complete physical, mental and social well-being in all aspects relating to the reproductive system and to its function and processes [1]. Infertility is a problem that affects both men and women everywhere in the world. Medical statistics from the U.S. show that approximately 15% of all couples of reproductive age are unable to conceive naturally [2].

Approximately 10% of couples at child bearing ages suffered from some kind of infertility and about half of these cases are because of male factors [3], which recently became a hot issue in the relevant studies. Adiga *et al.* [4] from India reported a decrease in sperm count and motility from 38.18 millions/ml and 61.16% in 1993-1994 to 26.61 millions/ml and 47.14%, respectively by 2004-2005. Sperm with normal morphology was 40.51 % in 1993-1994 and was decreased to 19.75% by 2004-2005.

Tobacco smoke is a known carcinogen, which has been associated with cancer of several sites. Since many compounds in tobacco smoke are mutagens, it has been suggested that smoking may affect male reproduction and the offspring's health. However, the effects of smoking on

sperm morphology are inconsistent. A review conducted a few years ago [5] suggests that smoking is associated with a modest reduction in sperm concentration, motility and morphology, but this effect seems to be limited to healthy men.

Smoking seems to have little effect on male fertility [6], although a recent study showed that infertile couples are more likely to smoke than fertile ones [7]. Although paternal smoking seems to be associated with congenital abnormalities and childhood cancer [8], sperm mutagenicity of smoking is still debated [9].

The Y chromosome micro-deletions are the most common genetic causes of male infertility due to spermatogenesis failure and have been reported in 2.7-55.5% of infertile men [10] and [11]. The frequency of Y chromosome micro deletions increases with the severity of spermatogenesis defect [12]. Micro-deletions in the Y chromosome long arm (Yq) are known to represent the pathogenic mechanisms for infertile males. Three distinct non-overlapping regions designated as AZFa, AZFb, AZFc are located in interval 5-6 of long arm of Y chromosome and are associated with impaired spermatogenesis in humans [13].

The micro-deletions in these AZF loci are associated with azoospermia as well as varied testis histology ranging from sertoli cell only syndrome (SCO) to hypo spermatogenesis (HSG) and maturation arrest. Normal testicular histology reveals two types of cells, i.e. Leyding cell and sertoli cell, both of which are required for normal functioning. Presence of only sertoli cell in testicular histology is known as SCO syndrome and is associated with infertility. These AZF regions are putative RNA binding proteins and so may be involved in the regulation of gene expression. Infertility can be now treated with the help of recently developed techniques such as intracytoplasmic sperm injection (ICSI) and in vitro fertilization (IVF). However, deletions on the Y chromosome may pose problems as they might be spread to the male offspring, causing the assiduousness of infertility problem over the next generations. This study was carried out to identify the substantial prevalence of Yq micro-deletions in environmental tobacco smokers [ETS]. PCR technology was employed in South Indian ETS (males) to identify the micro-deletions linked with male infertility.

MATERIALS AND METHODS

Experimental Design: The study was carried out on 180 white-collar workers. Upon enrolment, every individual signed an informed consent and filled out a comprehensive questionnaire concerning smoking habits, number of cigarettes smoked per day, age, gender, lifestyle (i.e. drinking, diet, etc.), medical history of disease and drugs. All the workers were divided into six groups as follows according to their age factor.

Table 1: Primer sequences and PCR product size of Y STS

STS Marker	Primer sequence	AZF region	PCR product size (bp)	
sY 81	F-AGGCACTGGTCAGAATGAAG			
	R-AATGGAAAATACAGCTCCCC	AZFa	209	
sY 84	F-AGAAGGGTCTGAAAGCAGGT			
	R-GCGTAGCTGGAGGAGGCTTC	AZFa	326	
sY 124	F-CAGGCAGGACAGCTTAAAAG			
	R-ACTGTGGCAAAGTTGCTTTC	AZFb	109	
sY 128	F-GGATGAGACATTTTTGTGGG			
	R-GCCCAATGTAAAACTGGACA	AZFb	228	
sY 133	F-ATTTCTCTGCCCTTCACCAG			
	R-TGATGATTGCCTAAAGGGAA	AZFb	177	
sY 254	F-GGGTGTTACCAGAAGGCAAA			
	R-GAACCGTATCTACCAAAGCAGC	AZFc	370	
sY 255	F-GTTACAGGATTCGGCGTGAT			
	R-CTCGTCATGTGCAGCCAC	AZFc	126	
sY 14	F-GAATATTCCCGCTCTCCGGA			
	R-GCTGCTGCTCCATTCTTGAG	Internal control SRY		

Group1: Control (20 to 40 years)

Group 2: Control (41 to 60 years)

Group 3: Active smoking subject (20 to 40 years)

Group 4: Passive smoking (20 to 40 years)

Group 5: Active smoking (41 to 60 years)

Group 6: Passive smoking (41 to 60 years)

Smokers smoked 10-30 cigarettes/day, passive smokers (ex-smokers) were exposed at about 6 h/day for at least 1 year and ex smokers had stopped at least 2 years. All workers were healthy individuals who followed a generally similar well-balanced diet and who had no problems in their medical history. Informed consent was obtained from all participating subjects. The work was carried out in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki [14].

Sampling: Blood samples (5 ml) were taken at 8.00 AM in the morning from each subject by venous puncture. Germline DNA was isolated by the standard protocol developed by Lahiri and Nurnberger [15] for the genotypic analysis

Yq Micro-deletion analysis by STS-PCR based strategy:

Each worker was tested for eight sequence tagged sites of AZF region located at long arm of Y chromosome including the internal control. The internal control used was SRY (sex determining region) gene. The primer sequences and PCR product size of different STSs primers [16] are represented in Table 1. PCR was carried out in 13 μ l reaction volume containing 150 ng of DNA, 1.5 mM MgCl2, dNTPs mix (0.2 mM each), oligonucleotide primers (10 pm each), Taq DNA polymerase (1 unit). Amplification

was carried out in a Eppendorf-Thermo cycler with following thermal profile-initial denaturation at 94 °C for 4 min followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension at 65 °C for 1 min followed by final extension at 65 °C for 5 min. PCR products were separated on a 2% agarose gel containing ethidium bromide (0.5 μ g/ml), by electrophoresis in TAE buffer.

Deletion of a particular STS was confirmed only when STS failed to amplify after three PCR attempts in presence of successful amplification of internal control. The presence of deletion results in the absence of synthesis of the desired product, therefore, absence of band corresponding to any of the studied region is indicative of presence of the deletion of the particular region. Similarly the presence of band corresponding to the amplified region is indicative of absence of deletion. A positive control (fertile male DNA) and a negative control (female DNA) were also included with each set of reaction to ensure that all primers worked and that no contamination occurred during the course of the study.

Statistical Analysis: Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Duncan's multiple range test (DMRT) by SPSS software package, version 17.0 (SPSS Inc, Chicago, IL, USA). Results were expressed as mean \pm S.D. from 30 workers in each group. The *P* values < 0.05 were considered to be significant.

RESULTS

In group 1 (control 20 to 40 years), no micro deletions were observed. When compared to group 1, 4 micro deletions (13.3%) were observed in group 3 (Active smoking 20 to 40 years) and 4 micro deletions (13.3%) were observed in group 4 (ex smokers 20 to 40 years). In group 2 (control 41 to 60 years), 1 micro deletion (3.3%) was observed. When compared to control group 2 (control 41 to 60 years), 7 micro deletions (23.3%) were

observed in group 5 (Active smoking 41 to 60 years) and 6 micro deletions (20%) were observed in group 6 (ex smokers 41 to 60 age).

Table 2, shows that the deletion in the sY81 micro satellite marker is significantly increased in 1, 2 and 3 EST groups as compared to controls at P<0.05. Deletion in the sY84 micro satellite marker is significantly increased in 5 and 6 EST groups (Active smoking and ex smokers: 41 to 60 years) when compared to other groups at P<0.05. The sY124 satellite marker is significantly increased in control workers (41-60 years) and all EST groups except group 4 (Passive smoking 20 to 40 age) and group 5 at P<0.05.

Elevated levels of micro deletions were observed in the sY128 micro satellite marker, it is significantly increased in all EST groups except group 4 (Passive smoking 20 to 40 years) as compared to control subjects at P<0.05. The sY133 satellite marker is significantly increased in the same groups as sY128. The sY254 micro satellite marker is significantly increased in EST groups 4 (Passive smoking 20 to 40 years) and 5 (Active smoking 20 to 40 years) as compared to control workers at P<0.05. High frequency of micro deletion were recorded in the sY255 micro satellite marker it is significantly increased in all groups compared with control groups at P<0.05. The sY14 micro satellite marker does not show any change in control subjects as well as the experimental subjects.

DISCUSSION

In humans, about 15% of couples are infertile for various reasons, of which male factors account for 50% of the cases. In approximately 30%-50% of all cases of azoospermia or severe oligozoospermia, etiology is idiopathic [17]. In the present study, 23 micro deletions were observed in 180 workers with the aid of 8 STS micro satellite markers. sY81 and sY84 are the two STS markers corresponding to the AZFa region of the Y-chromosome. The two main genes located in the AZFa region are USP9Yand DBY (also called DDX3Y). Deletions in the AZFa region that remove both of these genes cause

Table 2: The frequency of STS deletion in the controls and experimental groups

Table 2. The frequency of 515 detection in the controls and experimental groups										
Groups	sY81	sY 84	sY 124	sY 128	sY 133	sY 254	sY 255	sY 14		
1: Control subject-20 to 40 age	O ^a	O ^a	O ^a	O ^a	O ^a	O ^a	O ^a	0 ^a		
2: Control subject-41 to 60age	0^a	0^a	0.034 ± 0.18^{b}	0^a	0^a	O^a	O^a	0^a		
3: Active smoking subject-20 to40 age	0.034 ± 0.18^{b}	0^{a}	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0^a	0.034 ± 0.18^a	0^a		
4: Passive smoking subject-20 to40 age	0.006±0.25°	0^a	O^a	0^a	O^a	0.034 ± 0.18^{b}	0.034 ± 0.18^a	0^a		
5: Active smoking subject-41 to 60 age	0.006±0.25°	$0.034 {\pm}~0.18^{b}$	O^a	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0.034 ± 0.18^a	0^a		
6: Passive smoking subject-41 to 60 age	O^a	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	0.034 ± 0.18^{b}	O ^a	0.006±0.25°	0^a		

Values are Mean \pm S.E from 30 workers of each group.

Values not sharing a common superscript are differ significantly at P<0.05 (DMRT).

Sertoli cell-only syndrome, a condition characterized by the presence of complete Sertoli cells in the testes but a lack of spermatozoa in the ejaculate [18,19]. The present experiments shows that, sY81 has 1 deletions in group 3 experimental workers and each 2 deletion in groups 4 and 5 experimental workers. The sY81 micro satellite marker is significantly increased in all ETS groups except group 6 as compared to control workers at P<0.05. DBY, the major gene located in the AZFa region, has a probable role in infertility because it is localized in the testis and is involved in the development of premeiotic germ cells [20].

The sY84 micro satellite marker did not show any deletions in groups 1, 2, 3 and 4 but each 1 deletion was observed in groups 5 and 6. Thus the sY84 micro satellite marker is significantly increased in 5 and 6 EST groups (Active smoking subject and ex smokers: 41 to 60 age group) when compared to other groups at P<0.05. Therefore the PCR based Y-chromosome screening is becoming necessary both for providing accurate diagnosis as well as for proper management of the patient clinically and for counseling. Lardone et al. [19] studied the transcriptional activity of several AZF region genes found that men with Sertoli cell-only syndrome had reduced levels of DBY transcripts but that the other genes examined were transcribed normally. This finding suggests that DBY may play an important role in spermatogenesis. The USP9Y gene is also involved in spermatogenesis [21]. Shortening or deletion of the USP9Y gene causes azoospermia, oligozoospermia or oligo astheno zoospermia [22]. However, it seems that this gene may only be involved in the efficiency of spermatogenesis because it can be passed on to offspring. These findings suggest that the DBY gene has a more critical role in spermatogenesis than the USP9Y gene. Each AZF locus of Y chromosome is associated with different stages of spermatogenesis and deletion of each locus interrupts spermatogenesis at a particular stage [13]. Deletion of AZFa is associated with complete absence of germ cells and presence of sertoli cells in seminiferous tubules.

The AZFb deletions cause arrest of spermatogenesis at the primary spermatocyte stage, indicating that the region is essential for fertility [18,20]. The main gene in the AZFb region is RBMY and there are six copies of the gene located on the Y chromosome. RBMY1 codes for an RNA binding protein, which is a testis-specific splicing factor expressed in the nuclei of spermatogonia, spermatocytes and round spermatids [20]. In the present study three STS markers were used to detect the micro deletions in the AZFb region they are, sY 124, sY 128 and sY 133.

sY124, sY128 and sY133 micro satellite markers were mainly associated with the AZFb region of the Y-chromosome. Interestingly in the present study, group 2 control workers shows a deletion in the STS sequence and it also showed each 1 deletion in the groups 3 and 6. Hence the sY124 satellite marker is significantly increased in both control at 41-60 years and all EST groups except group 4 (Passive smoking 20 to 40 years) and group 5 at P<0.05. The sY128 satellite marker is significantly increased in all EST groups except group 4 (Passive smoking 20 to 40 years) as compared to control subjects at P<0.05.

The sY133 satellite marker is significantly increased in all EST groups except group 4 (Passive smoking 20 to 40 years) as compared to control subjects at P<0.05. Deletion of AZFb is associated with germ cell development arrest at pachytene stage. These observations are consistent with the observations of that subjects with AZFb deletion range from azoospermia to mild oligozoospermia [23].

The gene RBMY1 expression was reduced in azoospermic men [24]. A family of PRY genes is also found in the AZFb region of the Y chromosome. The PRY genes are involved in the regulation of apoptosis, an essential process that removes abnormal sperm from the population of spermatozoa [20]. In cases in which all the genes in the AZFb region except RBMY and PRY are deleted, patients present with hypo spermatogenesis. However, if both the RBMY and PRY genes are removed, spermatogenesis is arrested completely [20], indicating that RBMY and PRY are the major genes involved in fertility in the AZFb region. Deletions in the AZFc region produce a wide range of phenotypes, many of which are associated with low sperm concentration due to reduced spermatogenesis [25]. The AZFc deletions cause approximately 12% of nonobstructive azoospermia and 6% of severe oligozoospermia [26]. Studies demonstrate that only the AZFa and AZFb regions are needed to initiate spermatogenesis but that without the AZFc region, spermatogenesis will not be completely

Studies of Complete deletions of the AZFc region may occur in two different ways: either as a result of a previous deletion within the AZFc or spontaneously from a normal AZFc region. sY254 and sY255 are directly associated with the AZFc region of the Y-chromosome. sY254 shows each one deletion on the groups 4 and 5 besides this sY255 shows a high frequency of micro deletions, 4 deletion each 1 deletion in groups 3,4,5 and two deletion in group 6. Thus the sY254 micro satellite

marker is significantly increased in EST groups 4 (Passive smoking workers 20 to 40 age) and 5 (Active smoking workers 20 to 40 age) as compared to control subjects at P<0.05.

The sY255 micro satellite marker is significantly increased in all groups except control groups at P<0.05. AZFc deletion is associated with germ cell development arrest at spermatid stage and also with HSG and maturation arrest. sY254 and sY255 are mainly associated with the DAZ gene. The results falls in the above mentioned groups will have a deletion in the DAZ gene and DAZL1 gene. Deletion in the sY254 and sY255 may definitely show azoospermia condition or oligozoospermia condition with a clinical feature of maturation arrest, distorted sperm motility and sperm morphology and even show the dead sperm condition or highly restricted motility. The present experimental observations are supported by the results of several investigators [28,29].

The rapid growth of molecular biology has determined that micro deletions of the Y chromosome represent an important cause of male infertility and the most frequent genetic etiology of severe testiculopathy. Such findings are fundamental both for a careful diagnosis of male infertility and for its treatment and Y chromosome screening is now a reality in the major andrological and infertility centers. The detection of a deletion in an infertile man provides a proper diagnosis of the disease, allows the clinician to avoid empirical, unnecessary and often expensive treatments to improve fertility (e.g., hormonal treatments) and has important ethical consequences if the patient is a candidate for assisted reproduction techniques.

The identification of the actual role played by the AZF candidate genes in spermatogenesis will provide significant advances to our understanding of the biology of spermatogenesis. The analysis of novel Y-chromosomal genes with a potential role in male germ cell development will clarify other important features of this important chromosome.

To date, most studies assess either knowledge or perceived risk and questions primarily focus on heart and lung disease and not other smoking related risks (e.g., cancers, infertility), or the potential impact of these illnesses (e.g., premature death or disability). This study examines whether various health risks of cigarette smoking are known and are perceived to be a personal health risk by cigarette smokers. Evaluating knowledge and perceived risk can provide insight into whether more patient education is needed and in what areas, or if

clinicians should place more emphasis on personalizing these risks for an individual smoker. Determining whether knowledge and perceived risks of smoking differ by age, gender, socioeconomic status and general health could also be used to inform smoking cessation education and treatment programs [30].

In aggregate, these results suggest that the frequency of Y-chromosome micro deletions were remarkably high in active smokers, when compare to the ex smokers and controls. The ability to resolve differences between exposed and controlled subjects using blood is known to depend on the magnitude of the expected effect, the variance and distributional characteristics of the specific parameter in the study population and the number of men available for study. A larger study population would be needed to determine whether a smoking lifestyle also affected the other sperm end points. Thus, at this time, a cautious approach is recommended and active cigarette smoking (particularly in teenage men who consume alcohol and pursue a smoker's lifestyle) should be considered a potential genetic hazard capable of producing trisomy in future unexposed embryos, fetuses and children [30].

In conclusion, the frequency of Y-chromosome micro deletions were remarkably high in active smokers, when compare to the ex smokers and controls. The ability to resolve differences between exposed and controlled subjects using blood is known to depend on the magnitude of the expected effect, the variance and distributional characteristics of the specific parameter in the study population and the number of men available for study. A larger study population would be needed to determine whether a smoking lifestyle also affected the other sperm end points. Thus, at this time, a cautious approach is recommended and active cigarette smoking (particularly in teenage men who consume alcohol and pursue a smoker's lifestyle) should be considered a potential genetic hazard capable of producing trisomy in future unexposed embryos, fetuses and children.

ACKNOWLEDGEMENT

The authors thank the volunteers and experimental subjects for providing the blood samples. We extend our thanks to Dr. Major. M. Jailani, (Dean) and Dr. K. E. N. Nalla Mohamad (Principal) of Mohamed Sathak College of Arts and Science, Shollinganallur, Chennai - 600119 for providing the research facility. The timely help done by Mrs. Shanthi Perumal (Technical officer) and Ms. R. Nancy (Asst. Technical officer) is highly appreciated.

REFERENCES

- Chander, P.P., H. Indira and Z. Kusum, 2000. Need and feasibility of providing assisted technologies for infertility management in resource poor settings. ICMR Bull., 30: 55-62.
- Fernandez, P.R., A.G. Kessler and R.G. Rawlins, 1991.
 Modern approaches to the treatment of human infertility through assisted reproduction. P.R. Health Sci. J., 10: 75-81.
- de Kretser, D.M. and H.W.G. Baker, 1999. Infertility in men: recent advances and continuing controversies. J. Clin. Endocrinol. Metab., 84: 3443-3450.
- 4. Adiga, S.K., V. Jayaraman, G. Kalthur, D. Upadhya and P. Kumar, 2008. Declining semen quality among south Indian infertile men: a retrospective study. JHRS., 1: 15-18.
- 5. Vine, M.F.,1996. Smoking and male reproduction: a review. Int. J. Androl., 19: 323-337.
- Bolumar, F., J. Olsen and J. Boldsen, 1996. for the European Group on Infertility and Subfecundity: Smoking reduces fecundity: a European multicenter study on infertility and subfecundity. Am. J. Epidemiol., 143: 578-587.
- Guzick, D.S., J.W. Overstreet, P.F. Factor-Litvak, C.K. Brazil, S.T. Nakajima, C. Coutifaris, S.A. Carson, P. Cisneros, M.P. Steinkampf, J.A. Hill, D. Xu and D.L. Vogel, 2001. Sperm morphology, motility and concentration in fertile and infertile men. New Engl. J. Med., 345: 1388-1393.
- Ji, B.T., X.O. Shu, M.S. Linet, W. Zheng, S. Wacholder, Y.T. Gao, D.M. Ying and F. Jin, 1997. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers JNCI, 89: 238-244.
- Zenzes, M.T., R. Bielecki and T.E. Reed, 1999. Detection of dibenzo(a)pyrenenol epxposed-DNA adducts in sperm of men exposed to cigarette smoke. Fert. Steril., 72: 330-339.
- 10. Krausz, C., L.Q. Murci and K. McElreave, 2000. Prognostic value of Y chromosome micro deletion analysis, Hum. Reprod, 15: 1431-1434.
- 11. Simoni, M., E. Bakker, M.C.M. Eurling, G. Matthijs, E. Moro and C. Muller, 1999. Laboratory guidelines for of Y chromosomal microdeletions, Int. J. Androl., 22: 292-299.
- 12. Krausz, C. and K. McElreavey, 1999. Y chromosome and male infertility, Front. Biosci., 4: 1-8.

- Vogel, T., R.M. Speed and P. Teague, 1999. Mice with Y chromosome deletion and reduced Rbm genes on a heterozygous Daz1 null background mimic a human azoospermic factor phenotype, Hum. Reprod, 14: 3023-3029.
- 14. Nuremberg, 1996. Doctors' trial: Declaration of Helsinki, BMJ., 313: 1448-9.
- Lahiri, D.K. and Jr JI. Nurnberger, 1991. A rapid nonenzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic acid Res, 19: 5444.
- 16. Roberts, K.P., M. Kent-First and J.L. Pryor, 1997. PCR detection of Y chromosome micro deletions in infertile men, Biotechnol. Lab. Int., 2: 14-17.
- 17. Krausz, C., G.K. Forti and McElreavey, 2003. The Y chromosome and male fertility and infertility. Int. J. Androl., 26: 70-5.
- 18. Nuti, F. and C. Krausz, 2008. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online, 16: 504-13.
- Lardone, M.C., D.A. Parodi, R. Valdevenito, M. Ebensperger, A. Piottante and M. Madariaga, 2007. Quantification of DDX3Y, RBMY1, DAZ and TSPY mRNAs in testes of patients with severe impairment of spermatogenesis. Mol. Hum. Reprod., 13: 705-12.
- Vogt, P.H., 2005. Azoospermia factor (AZF) in Yq11: towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod Biomed Online, 10: 81-93.
- 21. Tyler-Smith, C., 2008. An evolutionary perspective on Ychromosomal variation and male infertility. Int. J. Androl., 8(31): 376-82.
- Krausz, C., S. Degl'Innocenti, F. Nuti, A. Morelli, F. Felici and M. Sansone, 2006. Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum. Mol. Genet., 15: 2673-81.
- 23. Kent-First, M., A. Muallem, J. Shultz, J. Pryor, K. Roberts, W. Nolten, A. Chandley, G. Gouchy, L. Jorgensen, T. Havighrust and J. Grosch, 1999. Defining regions of the Y-chromosome responsible for male infertility and identification of fourth AZF region (AZFd) by Y-chromosome microdeletion detection, Mol. Reprod. Dev., 53: 27-41.
- Lavery, R., M. Glennon, J. Houghton, A. Nolan, D. Egan and M. Maher, 2007. Investigation of DAZ and RBMYI, gene expression in human testis by quantitative real-time PCR. Arch Androl., 53: 71-3.

- Vogt, P.H.,1998. Human chromosome deletions in Yq11, AZF candidate genes and male infertility: history and update. Mol. Hum. Reprod., 4: 739-44.
- Kuroda-Kawaguchi, T., H. Skaletsky, L.G. Brown, P.J. Minx, H.S. Cordum and R.H. Waterston, 2001. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet, 29: 279-86.
- Georgiou I., M.Syrrou, N. Pardalidis, K. Karakitsios, T. Mantzavinos and N. Giotitsas, 2006. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J. Androl., 8: 643-73.
- Chang, L.P., V.M. Saver and S. Brown, 1999.
 Y chromosome micro deletion in a father and his four sons, Hum. Reprod., 14: 2689-2694.

- Simoni, M., J. Gromoll, B. Dworniczak, C. Rolf, K. Abshagen and A. Kamischke, 1997. Screening for deletions of the Y chromosome involving the DAZ (deleted in azoospermia) gene in azoospermia and severe oligozoospermia, Fertil. Steril., 67: 542-547.
- Rubes, J., X. Lowe, D. Moore II, S. Perreault, V. Slott,
 D. Evenson, G.S. Sherry and A.J. Wyrobek, 1998.
 Smoking cigarettes is associated with increased sperm disomy in teenage men Fertil and Steril, 70: 715-723.